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ABSTRACT

"Empirical evidence that the boat is safe", or how we tend to be fooled by silent risks.
Factum stultus cognoscit (The fool only understand risks after the harm is done). Risk is both
precautionary (fragility based) and evidentiary (statistical based); it is too serious a business
to be left to mechanistic users of probability theory.
This figure encapsulates the scientific "nonsucker" approach to risk and probability. Courtesy
George Nasr.

***

This book provides a mathematical framework for decision making and the analysis
of (consequential) hidden risks, those tail events undetected or improperly detected
by statistical machinery; and substitutes fragility as a more reliable measure of
exposure. Model error is mapped as risk, even tail risk.1

Risks are seen in tail events rather than in the variations; this necessarily links
them mathematically to an asymmetric response to intensity of shocks, convex or
concave.

The difference between "models" and "the real world" ecologies lies largely in
an additional layer of uncertainty that typically (because of the same asymmetric
response by small probabilities to additional uncertainty) thickens the tails and
invalidates all probabilistic tail risk measurements − models, by their very nature
of reduction, are vulnerable to a chronic underestimation of the tails.

So tail events are not measurable; but the good news is that exposure to tail
events is. In "Fat Tail Domains" (Extremistan), tail events are rarely present in past

1 This is a polite way to say No-BS approach to probability.
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data: their statistical presence appears too late, and time series analysis is similar
to sending troops after the battle. Hence the concept of fragility is introduced: is
one vulnerable (i.e., asymmetric) to model error or model perturbation (seen as an
additional layer of uncertainty)?

Part I looks at the consequences of fat tails, mostly in the form of slowness of con-
vergence of measurements under the law of large number: some claims require 400

times more data than thought. Shows that much of the statistical techniques used
in social sciences are either inconsistent or incompatible with probability theory. It
also explores some errors in the social science literature about moments (confusion
between probability and first moment, etc.)

Part II proposes a more realistic approach to risk measurement: fragility as non-
linear (concave) response, and explores nonlinearities and their statistical conse-
quences. Risk management would consist in building structures that are not neg-
atively asymmetric, that is both "robust" to both model error and tail events. An-
tifragility is a convex response to perturbations of a certain class of variables.
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P R E A M B L E / N OT E S O N T H E T E X T

This author travelled two careers in the opposite of the usual directions:

1) From risk taking to probability: I came to deepening my studies of
probability and did doctoral work during and after trading derivatives
and volatility packages and maturing a certain bottom-up organic view
of probability and probability distributions. The episode lasted for 21

years, interrupted in its middle for doctoral work. Indeed, volatility and
derivatives (under the condition of skin in the game) are a great stepping
stone into probability: much like driving a car at a speed of 600 mph (or
even 6,000 mph) is a great way to understand its vulnerabilities.

But this book goes beyond derivatives as it addresses probability prob-
lems in general, and only those that are generalizable,

and

2) From practical essays (under the cover of "philosophical") to spe-
cialized work: I only started publishing technical approaches (outside
specialized option related matters) after publishing nontechnical "philo-
sophical and practical" ones, though on the very same subject.

But the philosophical (or practical) essays and the technical derivations were
written synchronously, not in sequence, largely in an idiosyncratic way, what the
mathematician Marco Avellaneda called "private mathematical language", of which
this is the translation – in fact the technical derivations for The Black Swan[110] and
Antifragile[111] were started long before the essay form. So it took twenty years to
mature the ideas and techniques of fragility and nonlinear response, the notion of
probability as less rigorous than "exposure" for decision making, and the idea that
"truth space" requires different types of logic than "consequence space", one built
on asymmetries.

Risk takers view the world very differently from most academic users of proba-
bility and industry risk analysts, largely because the notion of "skin in the game"
imposes a certain type of rigor and skepticism about we call in the next chapter
cosmetic "job-market" science.

Risk is a serious business and it is high time that those who learned about it
via risk-taking have something not "anecdotal" to say about the subject. In fact we
will try to build a new maximally rigorous approach to it, one that incorporates
practice.

acknowledgments
The text is not entirely that of the author. Four chapters contain recycled text writ-
ten with collaborators in standalone articles: the late Benoit Mandelbrot (section of
slowness of LLN under power laws, even with finite variance), Elie Canetti and the

xv



Chapter Summaries

stress-testing staff at the International Monetary Fund (for the heuristic to detect
tail events), Phil Tetlock (binary vs variable for forecasting), Constantine Sandis
(skin in the game) and Raphael Douady (mathematical mapping of fragility). But
it is the latter paper that represents the biggest debt: as the central point of this
book is convex response (or, more generally, nonlinear effects which subsume tail
events), the latter paper is the result of 18 years of mulling that single idea, as an
extention of Dynamic Hedging [108] applied outside the options domain, with 18

years of collaborative conversation with Raphael before the actual composition!
This book is in debt to three persons who left us. In addition to Benoit Mandel-

brot, this author feels deep gratitude to the late David Freedman, for his encourage-
ments to develop a rigorous model-error based, real-world approach to statistics,
grounded in classical skeptical empiricism, and one that could circumvent the prob-
lem of induction: and the method was clear, of the type "don’t use statistics where
you can be a sucker" or "figure out where you can be the sucker". There was this
"moment" in the air, when a group composed of the then unknown John Ioannidis,
Stan Young, Philip Stark, and others got together –I was then an almost unpub-
lished and argumentative "volatility" trader, something people couldn’t quite un-
derstand unless expressed as "nonlinear payoffs", even then (Dynamic Hedging was
unreadable to nonspecialists) and felt that getting David Freedman’s attention was
more of a burden than a blessing, as it meant a severe obligation.2

Indeed this exact book project was born from a 2012 Berkeley statistics depart-
ment commencement lecture, given in his memory, with the message: "statistics
is the most powerful weapon today, it comes with responsibility" (since numerical
assessments increase risk taking) and the corrolary, directly taken from his legacy:

"Understand the model’s errors before you understand the model".

leading to the theme of this book, that all one needs to do is figure out the answer
to the following question:

Are you convex or concave to model errors?

Further, the Risk manager is the complement of the statistician:

The (conventional) statistician looks at the properties inside the confidence
intervals, the risk analyst outside of them. (Figures 0.1 and 0.2

which is the reason statisticians have trouble with risk statements.

It was a very sad story to get a message from the statistical geophysicist Albert
Tarantola linking to the electronic version of his book Inverse Problem Theory: Meth-
ods for Data Fitting and Model Parameter Estimation [112]. He had been maturing
an idea on dealing with probability with his new work taking probability ab ovo.
Tarantola had been piqued by the "masquerade" problem in The Black Swan pre-
sented in Chapter 4 and the notion that most risk methods "predict the irrelevant".

2 The late David Freedman was known to this author for his paper with Stark What is the chance of an
earthquake?[44] but he really covered all manner of statistical mistakes, particular with the modeler’s
biases in his magisterial textbook [45].
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Domain of 

(Mechanistic)

Statistical

Techniques

98% tunnel

Tail Risk

Tail 

Opportunity

(optionality)

-15 -10 -5 5 10 15

Figure 0.1: Conventional focus of statistical inference, which is why mechanistic uses cannot
apply to tail risks. Scientific papers operate in that space and cannot be directly used to
discuss risk. In addition confidence discussions are binary statements and do not address
payoff (see the codifications in Chapter 1).(Note that the two distributions are calibrated
to deliver exactly the same probability of staying in the tunnel [−K, K], here 98%, with
K : P(X < −K) = .01, P(X > K) = .99).

Fat-tailed

Distribution

(payoff swamps

probability)

Thin-tailed

Distribution

(probability

 swamps payoff)

-22 -20 -18 -16 -14 -12 -10

Figure 0.2: Zoom-in of the graph above, showing main difference between tail risks seen
under thin (Mediocristan) and fat tails (Extremistan) and why the usual statistics texbook
discussions on probabilities need to be refined for risk management .

Tragically, he passed away before the conference he was organizing took place, and
while I ended up never meeting him, I felt mentored by his approach –along with
the obligation to deliver technical results of the problem in its applications to risk
management.
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Sections of this text were presented in many places –as I said it took years to ma-
ture the point. Some of these chapters are adapted from lectures on hedging with
Paul Wilmott and from my course "Risk Management in the Real World" at NYU
which as I state in the next chapter is an absurd (but necessary) title. Outside of risk
practitioners, in the first stage, I got invitations from statistical and mathematics de-
partments initially to satisfy their curiosity about the exoticism of "outsider" and
strange "volatility" trader or "quant" wild animal. But they soon got disappointed
that the animal was not much of a wild animal but an orthodox statistician, actually
overzealous about a nobullshit approach. I thank Wolfgang Härtle for, before this
book was started in the following form, a full-day seminar at Humboldt University
and Pantula Sastry for providing the inaugurating lecture of the International Year
of Statistics at the National Science Foundation.

Carl Tony Fakhry has taken the thankless task of diligently rederiving every equa-
tion (at the time of writing he has just reached Chapter 3). I also thank Wenzhao
Wu and Mian Wang for list of typos.

to the reader

The text can be read by (motivated) non-quants: everything mathematical in the
text is accompanied with a "literary" commentary, so in many sections the math
can be safely skipped. Its mission, to repeat, is to show a risk-taker perspective
on risk management, integrated into the mathematical language, not to lecture on
statistical concepts.

On the other hand, when it comes to math, it assumes a basic "quant level"
advanced or heuristic knowledge of mathematical statistics, and is written as a
monograph; it is closer to a longer research paper or old fashioned treatise. As I
made sure there is little overlap with other books on the subject, I calibrated this
text to the wonderful textbook by the late A. Papoulis Probability, Random Variables,
and Stochastic Processes [84]: there is nothing basic discussed in this text that is not
defined in Papoulis.

For more advanced, more mathematical, or deeper matters such as convergence
theorems, the text provides definitions, but the reader is recommended to use Lo-
eve’s two volumes Probability Theory [70] and [71] for a measure theoretic approach,
or Feller’s two volumes, [40] and [39] and, for probability bounds, Petrov[86]. For
extreme value theory, Embrecht et al [31] is irreplaceable.

status/completion of book

This is a first draft for general discussion, not for equation-wise verification. There
are still typos, errors and problems progressively discovered by readers thanks to
the dissemination on the web. The bibliographical references are not uniform, they
are in the process of being integrated into bibtex.

Note that there are redundancies that will be removed at the end of the composi-
tion.

xviii



Chapter Summaries

August 2014 status: After completing most of the math sections, I started
putting words and structure around the concepts, so I am progressively intro-
ducing "definitions", "remarks", and comments in plain English, inspired by
both Bourbaki and legal codifications. The idea is to codify and explain all
terms to clear up the usual confusions. As of August 2014, I am only 15%
done.

Below is the list of the incomplete sections.

Incomplete Sections in Part I (mostly concerned with limitations of measurements of tail
probabilities)

i A list of symbols.

ii Chapter 3 proposes a measure of fattailedness based on ratio of Norms for all(
superexponential, subexponential, and powerlaws with tail exponent >2); it is
more powerful than Kurtosis since we show it to be unstable in many domains.
It lead us to a robust heuristic derivation of fat tails. We will add an Appendix
comparing it to the Hill estimator.

iii An Appendix on the misfunctioning of maximum likelihood estimators (exten-
sion of the problem of Chapter 3).

iv In the chapter on pathologies of stochastic processes, a longer explanation of
why a stochastic integral "in the real world" requires 3 periods not 2 with ex-
amples (event information for computation of exposureXt → order Xt+∆t →
execution Xt+2∆t).

v The "Weron" effect of recovered α from estimates higher than true values.

vi A lengthier (and clearer) exposition of the variety of bounds: Markov–Chebychev–
Lusin–Berhshtein–Lyapunov –Berry-Esseen – Chernoff bounds with tables.

vii A discussion of the Von Mises condition. A discussion of the Cramér condition.
Connected: Why the research on large deviations remains outside fat-tailed
domains.

viii A discussion of convergence (and nonconvergence) of random matrices to the
Wigner semicirle, along with its importance with respect to Big Data

ix A section of pitfalls when deriving slopes for power laws, with situations where
we tend to overestimate the exponent.

incomplete sections
(mostly concerned with building exposures and convexity of payoffs: What is and
What is Not "Long Volatility")

i A discussion of gambler’s ruin. The interest is the connection to tail events and
fragility. "Ruin" is a better name because the idea of survival for an aggregate,
such as probability of ecocide for the planet.
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ii An exposition of the precautionary principle as a result of the fragility criterion.

iii A discussion of the "real option" literature showing connecting fragility to the
negative of "real option".

iv A link between concavity and iatrogenic risks (modeled as short volatility).

v A concluding chapter.

Best Regards,
Nassim Nicholas Taleb
November 2014
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Part I

F I G U R I N G O U T P R O B A B I L I T Y A N D W H AT I T M E A N S





1 W H AT I S P R O B A B I L I T Y ? W H AT I S
E X P O S U R E ?

Chapter Summary 1: Probability defined –first things first. Why and how we
cannot dissociate probability from decision. The notion of contract theory.
Fallacies coming from verbalistic descriptions of probability. The difference
between classes of payoffs with probabilistic consequences. Formal defini-
tion of metaprobability.

The larger mission is as follows:

The project – both real-world and anti-anecdotal – is inspired of the many
historical efforts and projects aimed to instil rigor in domains that grew organ-
ically in a confused way, by starting from the basics and expanding, Bourbaki-
style, in a self-contained manner but aiming at maximal possible rigor. This
would be a Bourbaki approach but completely aiming at putting the practical
before the theoretical, a real-world rigor (as opposed to Bourbaki’s scorn of the
practical and useful, justified in a theoretical field like mathematics).

The "first thing" is not quite defining probability but rather formally mapping
the pair probability and "event" under consideration, subsumed by the notion of
probability –the two are inseparable. There has been a long tradition of attempts
to define probability, with tons of discussions on what probability is, should be,
can be, and cannot be. But, alas these discussions are at best minute Byzantine nu-
ances, the importance of which has been magnified by the citation ring mechanism
described in Chapter2; these discussions are "academic" in the worst sense of the
word, dwarfed by the larger problem of:

• What is the random "event" under concern? Is it an "event" or something more
complicated, like a distribution of outcomes with divergent desirability?

• How should we use "probability": probability is not an end product but an
input in a larger integral transform, a payoff kernel.

We have done statistics for a century without a clear definition of probability
(whether it is subjective, objective, or shmobjective plays little role in the equations
of probability: all these probabilities end up adding up to 1 and following the same
rules of calculus). But what matters significantly is the event of concern, which is
not captured by the verbalistic approaches to probability.1 Trying to define "what is
fire" with academic precision is not something a firefighter should do, as interesting
as it seems, given his higher priorities of figuring out the primary (nonacademic)
variable, what is (and what is not) burning. Almost all these definitions of fire will
end up burning the building in the same manner. People whithout skin in the game

1 In my basement I have shelves and shelves of treatises trying to define probability, from De Finetti,
Keynes, von Mises, ... See Gillies for the latest approach. Compared to the major problems with
metaprobability are mere footnote, as I am showing here by confining such discussion to a footnote.
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what is probability? what is exposure?

(nonfirefighters) who spend time worrying about the composition of fire, but not its
effect, would remain in the gene pool and divert scientific pursuit into interesting
but inconsequential directions.2

For we truly quite don’t know what we are talking about when we talk about
probability. Often when we talk about probability, we are discussing something
else –something far more fundamental.

1.1 the conflation of events and exposures
The problem can be best explained with this martial principle:

The art of war teaches us to rely not on the likelihood of the enemy’s not
coming, but on our own readiness to receive him; not on the chance of
his not attacking, but rather on the fact that we have made our position
unassailable.

in Lao Tsu, The Art of War

Fallacy 1.1 (Verbalistic Expression of Probability, an Introduction to the problem).
"Probability" is meaningless without an associated payoff function as its verbalistic expres-
sion doesn’t necessarily match its mathematical one, the latter usually implicitly entailing
a (contingent) payoff, except in rare cases where the payoff is "binary" (even then), a con-
fusion that is prevalent in "research" on overestimation of rare events ( Chapter ??). The
probability distribution of the payoff, not that of the primary random variable being of con-
cern, much of research on rare events in psychology and economics is actually invalidated
by switching from the verbalistic to the mathematical-contractual definition.

We skip the elements of measure theory for now in expressing random variables.
Take x a random or nonrandom variable (leave the exact definition of random

variable and random event for later), and f (x) the exposure, payoff, the effect of
x on you, the end bottom line. Practitioner and risk takers observe the following
disconnect: people (nonpractitioners) talking x (with the implication that we prac-
titioners should care about x in running our affairs) while practitioners think about
f (x), nothing but f (x). And there has been a chronic confusion since Aristotle
between x and f (x). The mistake is at two level: one, simple confusion; second,
a blind spot missing an elephant the decision-science literature, being aware the
distinction and yet not realizing that action on f (x) is easier than action on x.3

2 For an example of Byzantine concerns about probability so detailed and diverted from planet earth
that they miss everything of relevance to risk, see the works of David Aldous on the central difference
between "finite additivity" or "countable additivity", which can be classified as the hijacking of the
most important discipline in the world, probability, by scholastic distinctions without (or with relatively
minor) real-world difference.

3 Clearly f (x) can be utility of x, or, even better, the combination; a utility of a function of x, u(g(x)),
where u is utility and g a function. Utility theory has done some work focusing on the expectation of∫

f (x)dP(x) where P is the probability. But there seems to have been a lack of focus on the distribution
of the composite which, as we show in Chapter 15, would make standard concave and unbounded
utility completely absurd for anyone to take risks under the slightest left-fat tailedness. It is as if utility
theorists have been drowning too much in the axiomatic morass to consider what we can do about it
in real life. Hence in this book our relation to utility will remain rather ambiguous except for specific
discussions. As we will see with the idea of a contract, one can alter a payoff of x, not utility of x.
For option pricing the convenience of Black-Scholes approach has not been to show a pricing formula
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1.1 the conflation of events and exposures

Probability Distribution of x Probability Distribution of fHxL

Figure 1.1: The conflation of x and f (x): mistaking the statistical properties of the exposure
to a variable for the variable itself. It is easier to modify exposure to get tractable properties
than try to understand x. This is more general confusion of truth space and consequence
space.

Mixed Convexities and Natural Systems

A more advanced point. In general, in nature, because f (x) the response of enti-
ties and organisms to random events is generally thin-tailed while x can be fat-
tailed, owing to f (x) having the sigmoid "S" shape convex-concave (some type
of floor below, progressive saturation above). This explains why the planet has
not blown-up from tail events. And this also explains the difference (Chapter
21) between economic variables and natural ones, as economic variables can
have the opposite effect of accelerated response at higher values of x (right-
convex f (x)) hence a thickening of at least one of the tails.

Examples The variable x is unemployment in Senegal, f1(x) is the effect on the
bottom line of the IMF, and f2(x)is the effect on your grandmother’s well-being
(which we assume is minimal).

The variable x can be a stock price, but you own an option on it, so f(x) is your
exposure an option value for x, or, even more complicated the utility of the exposure
to the option value.

The variable x can be changes in wealth, f (x) the convex-concave value function
of Kahneman-Tversky, how these “affect” you. One can see that f (x) is vastly more
stable or robust than x (it has thinner tails).

I grew up under the rule that it is more reliable to modify f (x) to the point where
one can be satisfied with the reliability of the risk properties than try to understand
the statistical properties of x, particularly under fat tails.4

Principle 1.1.
Risk management is less about understanding random events as much as what they can do
to us.

–this has existed for a long time – but rather to exit the discussion on utility. But, as I have shown, we
didn’t even need Black-Scholes for that.

4 The reason decision making and risk management are inseparable is that there are some exposure people
should never take if the risk assessment is not reliable, which, as we will see with the best map fallacy,
is something people understand in real life but not when modeling.
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Figure 1.2: When you use the services of a lawyer for a contract, you are working on limiting
or constructing f (x) your exposure, where your risk and liability start and end. This 13th C.
treatise by the legal and theological scholastic philosopher Pierre de Jean Olivi provide vastly
more rigorous codification and deeper treatment of risk and probability than the subsequent
mathematical ones grounded in the narrower ludic dimension (i.e., confined to games) by
Fermat, Pascal, Huyguens, even De Finetti. Why? Because one can control exposure via
contracts and structures rather than just narrowly defined knowledge of probability. Fur-
ther, a ludic setup doesn’t allow or perturbation of contractual agreements, as the terms are
typically fixed.

The associated second central principle:

Principle 1.2 (Central Principle of (Probabilistic) Decision Making).
It is more rigorous to take risks one understands than try to understand risks one is taking.

And the associated fallacy:

Definition 1.1 (The Best Map Fallacy).
Unconditionally preferring a false map to no map at all. More technically, ignoring the fact
that decision-making entails alterations in f (x) in the absence of knowledge about x.

About every reasonable person facing an plane ride with an unreliable risk model
or a high degree of uncertainty about the safety of the aircraft would take a train

6



1.1 the conflation of events and exposures

instead; but the same person, in the absence of skin in the game, when working as
a professor, professional manager or "risk expert" would say : "well, I am using the
best model we have" and use something not reliable, rather than be consistent with
real-life decisions and subscribe to the straightforward principle : "let’s only take
those risks for which we have a reliable model".

The best map is a violation of the central principle of risk management, Principle
1.2.

The fallacy is explained in The Black Swan [110]:

I know few people who would board a plane heading for La Guardia airport
in New York City with a pilot who was using a map of Atlanta’s airport "be-
cause there is nothing else." People with a functioning brain would rather drive,
take the train, or stay home. Yet once they get involved in economics, they pre-
fer professionally to use a wrong measure, on the ground that "we have nothing
else." The idea, well accepted by grandmothers, that one should pick a destina-
tion for which one has a good map, not travel and then find "the best" map, is
foreign to PhDs in social science.

This is not a joke: the "give us something better" has been a recurring problem
this author has had to deal with for a long time.

1.1.1 Contract Theory

The rigor of the 13th Century legal philosopher Pierre de Jean Olivi is as close to our
ambition as that of Kolmogorov and Paul Lévy. It is a fact that stochastic concepts
such as probability, contingency, risk, hazard, and harm found an extreme sophisti-
cation in philosophy and legal texts, from Cicero onwards, way before probability
entered our vocabulary –and of course probability was made poorer by the mental
gymnastics approach and the ludic version by Fermat-Pascal-Huygens-De Moivre
...

Remark 1.1 (Science v/s Contract Theory).
Science is typically in binary space (that is, True/False) as defined below, not about exposure,
while risk and decisions are necessarily in standard real-world full payoff space. Contract
theory is in exposure space. Risk management is closer to the latter.

Remark 1.2 (Derivatives Theory).
Option theory is mathematical contract theory.5

Remark 1.3.
A function of a random variable, s.a. exposure, needs to be treated as a separate random
variable.

The point seems trivial but is not. Statisticians make the benign conflation of
a random event ω for a random variable, which in most cases is just an abuse of
notation. Much more severe –and common –is the conflation of a random variable
for another one (the payoff).

Just consider how we define payoff of options, a combination of legal considera-
tions and mathematical properties.

5 I thank Eric Briys for insights along these lines.
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Definition 1.2 (Binary).
Binary statements, predictions and exposures are about well defined discrete events ω in
probability space (Ω, F , P), with true/false, yes/no types of answers expressed as events in
a specific probability space. The outcome random variable X(ω) is either 0 (the event does
not take place or the statement is false) or 1 (the event took place or the statement is true),
that is the set {0,1} or the set {aL, aH}, with aL < aH any two discrete and exhaustive values
for the outcomes.

Example of binary: most scientific statements tested by "p-values", or most con-
versational nonquantitative "events" as whether a person will win the election, a
single individual will die, or a team will win a contest.

Definition 1.3 (Standard, Real-World, Full Payoff, or "Vanilla" Space).
Statements, predictions and exposures, also known as natural random variables, correspond
to situations in which the payoff is either continuous or can take several values. An event
ω in probability space (Ω, F , P) maps to random variable in R1, with aL < aH ∈ R ,

X(ω) ∈ either (aL, aH), [aL, aH), (aL, aH], or [aL, aH],

where these intervals are Borel sets.

We start with a trivial error –trivial but frequently made.

Example 1.1 (Market Up or Down?).
In Fooled by Randomness (2001/2005) [106], the author was asked during a meeting which
was more probable, that a given market would go higher or lower by the end of the month.
"Higher", he said, insisting that it was "much more probable". But then it was revealed that
he was making trades that benefit if that particular market went lower. The story wasn’t
retold for any paradox (too trivial) by as wonderment as to why people are surprised at all
by such a story.

This of course, is most trivial for statisticians and professional quantitative traders
but it appears to be frequently made since many performances are assessed on the
frequency of profits not the expectation. (Yes, the market is more likely to go up,
but should it go down it will fall much much more) and obvious when written
down in probabilistic form, so for St the market price at period t there is nothing
incompatible between probability and expectation having (sort of) opposite signs:

sgn
(

P(St+1 > St)−
1
2

)
= −sgn(E(St+1)− St)

(where E is the expectation). The left side of the equation expresses the "more
likely" mathematically, and shows how trivial the divergence can be. This diver-
gence in sign is possible once one takes into account a full distribution for St+1,
which comes from having the mean much much lower than the median (under
negative skewness of the distribution).

Beyond the trivial, this example illustrates the common confusion between a bet
and an exposure. A bet is a binary outcome, an exposure has more nuanced results
and depends on full distribution.

When we go deeper into the subject, many less obvious, or less known paradox-
style problems occur. Simply, it is of the opinion of the author, that it is not rigorous
to talk about “probability” as a final product, or even as a “foundation” of decisions.
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Table 1: Four Classes
Class Name Function Fourier Transform E(Ψ)+

Pi notation of φ(Ψ+): φ̂1(t)
P1 Atomic Ψ1 1 p(x)

P2 Binary Ψ+
2 , Ψ−2 (1− πK) + eitπK πK

P3 Vanilla Ψ+
3 , Ψ−3 (1− πK) −K πK+

+
∫ ∞

K eit dPx
∫ ∞

K x dPx

P4a Comp. Ψ4 ∏ φ̂i(t) ΣΩiE(Ψi)
P4b Gen. Sigm.

∫
E(Ψi) dΩ

The vanillas add a layer of complication: profits for companies or deaths due
to terrorism or war can take many, many potential values. You can predict the
company will be “profitable”, but the profit could be $1 or $10 billion.

The conflation binary-vanilla is a mis-specification often made in probability, seen
in as fundamental texts as in J.M. Keynes’ approach to probability [64]. Such a con-
flation is almost always present in discussions of "prediction markets" and similar
aberrations; it affects some results in research. It is even made in places by De
Finetti in the assessment of what makes a good "probability appraiser"[22].6

The central point here is that decision-making is not about being a good proba-
bility appraiser –life is not about probability as a standalone concept but some-
thing more complex in which probability only enters as a kernel, or integral
transform.

The designation "vanilla" originates from definitions of financial contracts.7

Example 1.2 (Too much snow).
The owner of a ski resort in the Lebanon, deploring lack of snow, deposited at a shrine of the
Virgin Mary a $100 wishing for snow. Snow came, with such abundance, and avalanches,
with people stuck in the cars, so the resort was forced to close, prompting the owner to quip
"I should have only given $25". What the owner did is discover the notion of nonlinear
exposure under tail events.

Example 1.3 (Predicting the "Crisis" yet Blowing Up).
The financial firm Morgan Stanley correctly predicted the onset of a subprime crisis, but
they misdefined the event they called "crisis"; they had a binary hedge (for small drop) and
ended up losing billions as the crisis ended up much deeper than predicted.

As we will see, under fat tails, there is no such thing as a “typical event”, and
nonlinearity widens the difference between verbalistic and precisely contractual
definitions.

6 The misuse comes from using the scoring rule of the following type:if a person gives a probability p
for an event A, he is scored (p − 1)2 or p2, according to whether A is subsequently found to be true
or false. Consequences of A or the fact that there can be various versions of such event are, at best, an
afterthought.

7 The “vanilla” designation comes from option exposures that are open-ended as opposed to the binary
ones that are called “exotic”; it is fitting outside option trading because the exposures they designate are
naturally occurring continuous variables, as opposed to the binary that which tend to involve abrupt
institution-mandated discontinuities.
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Figure 1.3: Comparing payoff in classes P2 to those in P3 (top), or binaries to the vanilla.
The vertical payoff shows xi, (x1, x2, ...) and the horizontal shows the index i= (1,2,...), as i
can be time, or any other form of classification. We assume in the first case payoffs of {-1,1},
and open-ended (or with a very remote and unknown bounds) in the second.

1.2 payoff classes P1 through P4

Let x ≡ xT be a (non necessarily) Markovian continuous state variables observed
at period T, T ∈ R+; x has support D = (D−,D+). The state variable is one-tailed
or two-tailed, that is bounded on no more than one side, so either D+ = ∞ or
D− = −∞, or both.
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Snowfall

Payoff

Figure 1.4: The graph shows the pay-
ofd to the ski resort as a function
of snowfall. So the discrete variable
"snow" (vs "no snow") is not a ran-
dom event for our purpose. Note
that such a payoff is built via a con-
vex/concave combinations of vanil-
las.

Benefits from

Decline 

Serious

Harm from

Decline
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Figure 1.5: A confusing story: mis-
taking a decline for an "event". This
shows the Morgan Stanley error of
defining a crisis as a binary event;
they aimed at profiting from a de-
cline and ended up structuring their
exposure in a way to blow up from it.
This exposure is called in derivatives
traders jargon a "Christmas Tree",
achieved in with P4 through an
addition of the following contracts
Ψ−3 (K)1≤i≤3 and quantitities q1, q2
and q3 such that q1 > 0, q2 , q3 <
0, and q1 < −q2 < −q3, giving
the toxic and highly nonlinear termi-
nal payoff Ψ4 = q1Ψ−3 (K) + q2Ψ−3 (K−
∆K) + q3Ψ−3 (K − k∆K), where k > 1.
For convenience the figure shows K2
triggered but not K3 which kicks-in
further in the tails.

80 100 120 140
x

-5

5

10

Payoff

Figure 1.6: Even more confusing: ex-
posure to events –in class P4 –that
escape straightforward verbalistic de-
scriptions. Option traders call this a
"butterfly exposure" in the jargon.
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x
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Figure 1.7: Payoff Class P1

The "primitive" state variable xt is continuously observed between discrete peri-
ods T−∆t and T. The payoff or exposure function is Ψ1t>τ where τ = {inf(t) : xt /∈
A , t ≤ T}, a stopping-time conditional discretization of the continuously sampled
time.8

The "payoff kernel" Ψ at time T is a member of the exhaustive and mutually ex-
clusive following 4 classes. We write its probability distribution φ(Ψ) and charac-
teristic function φ̂(t) (the distributions of the payoff under the law of state variable
x between T − ∆t and T , Ψ itself taken as a random variable) at T , and p(x ) the
probability law for x at T .

Note that the various layers are obtained by integration over the state variable x
over segments of the domain D :

Ψ i =
∫

Ψ i−1 (x ) dx

1.2.1 Atomic Payoff P1

Definition 1.4 (Class P1 , or Arrow-Debreu State Variable).
Ψ ≡ Ψ1 (x , K ), which can be expressed as the Dirac Delta function:

Ψ1(x, K) = δ(x− K)

where
∫

K∈D δ(x− K) dx = 1 and
∫

K/∈D δ(x− K) dx = 0 otherwise.

8 Without getting into details the stopping time does not have to be off the same primitive state variable
xt –even in dimention 1 –but can condition on any other state variable.
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1.2 payoff classes P1 through P4
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Figure 1.8: Payoff Class P2

Remark 1.4 (Characteristic function invariance).
The Characteristic function φ̂1(t, K) = 1 for all continuous probability distributions p(x) of
the primitive state variable x.

Proof.
∫
D ei t δ(x−K) p(x)d(x) =

∫
D p(x)d(x) = 1 when K is in the domain of integration.

Remark 1.5.
The expectation of Ψ1 maps to a probability density at K for all continuous probability
distributions.

Proof. Consider that

(1.1)i
∂

∂t
φ̂1(t, K) = −i

∂

∂t

∫
D

e(i t δ(x−K)) p(x)dx

=
∫
D

e(i t δ(x−K))δ(x − K)p(x)dx

Hence
E(Ψ) = i

∂

∂t
φ̂1(t, K)|t=0= p(K)

13
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1.2.2 Binary Payoff Class P2

Definition 1.5 (Ψ ∈ P2, or Binary Payoffs).
Ψ ≡ Ψ2(K) obtained by integration, so

Ψ+
2 (K) =

∫ K

D−
Ψ1(x)dx

which gives us, writing (for clarity) x for the state variable in the integrand and X for the
observed one:

Ψ+
2 (X , K ) =

{
1 if X ≥ K ;
0 if X < K .

and

Ψ−2 (K ) =
∫ D+

K
Ψ1 (x )dx

giving us:

Ψ−2 (X , K ) =
{

0 if X > K ;
1 if X ≤ K .

which maps to the Heaviside θ function with known properties.

Remark 1.6.
The class P2 is closed under affine transformation a H Ψ + a L , for all combinations
{a H , a L : a H x + a L ∈ D}. This is true for affine transformations of all payoff
functions in Ψ≥2 , the unit of payoff becoming a H + a L and the lower (upper) bound
a L (a H ).

Proposition 1.1 (Binaries are Thin-Tailed).
The probability distribution φ(Ψ2 ), a "binary" payoff is a Bernouilli regardless of the un-
derlying probability distribution over the state variable x.

Proof. First consider that Ψ+
2 can be written as Ψ+

2 (x ) = 1
2 (1 + sgn(x − K )). Its

characteristic function φ̂+
2 (t , K ):

φ̂+
2 (t , K ) =

∫
D

e
1
2 i t (1+sgn(x−K )) p(x ) dx (1.2)

=
∫
<K

p(x ) dx +
∫
≥K

e i t p(x ) dx

So, with πK ≡ P(X ≥ K ),

φ̂+
2 (t , K ) = (1 − πK ) + e i t πK

which is the characteristic function of the Bernouilli distribution.

Note that we proved that Ψ2 is subgaussian as defined in [61] regardless of
p(x ) the probability distribution of the state variable, even if p(x ) has no
moments.

14
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Figure 1.9: Payoff Class P3

1.2.3 Vanilla Payoff Class P3, building blocks for regular exposures.

Definition 1.6 (Ψ ∈ P3, or Vanilla Payoff).
Ψ ≡ Ψ3(X, K) obtained by integration, so

Ψ+
3 (X, K) =

∫ X

D−
Ψ2(x− K)dx

which gives us:

Ψ+
3 (X, K) =

{
X− K if X ≥ K;
0 if X < K.

and

Ψ−3 (X, K) =
∫ D+

X
Ψ2(x)dx

giving us:

Ψ−3 (X, K) =
{

K− X if X ≤ K;
0 if X > K.

Assume the support spans the real line. The characteristic function φ(t, K) can be
expressed as:

φ(t, K) =
∫ ∞

−∞
p(X)e

1
2 it(X−K)(sgn(X−k)+1) dX

which becomes
φ(t, K) = (1− πK) + e−itK

∫ ∞

K
eitx p(x)dx (1.3)
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Figure 1.10: Stable Distributions: re-
markably the three have exactly the
same mean and mean deviation, but
different β symmetry parameter.
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Figure 1.11: Stable Distribution. As
we decrease skewness, with all other
properties invariant, the CVar rises
and the PVar (probability associated
with VaR) declines.

Proposition 1.2 (Impossibility).
It is possible to build a composite/sigmoidal payoff using the limit of sums of vanillas
with strikes K, and K + ∆K, but not possible to obtain vanillas using binaries.

Proof. The Fourier transform of the binary does not integrate into that of the
vanilla as one need K struck at infinity. The sum requires open-ended payoffs
on at least one side.

For many distributions of the state variable the characteristic function allows
explicit inversion (we can of course get numerical effects). Of some interest is the
expectation that becomes:

E (Ψ+
3 ) =

∫ ∞

K
x p(x ) dx − K πK (1.4)

which maps to common derivatives pricing such as the Bachelier approach[5] or it
Lognormal generalizations popularized with [11].

As we can see Eq. 1.4 doesn’t depend on the portion of the tail of the distribution
below K. Of interest is the "stub" part of the pricing, which represents the difference
between the vanilla and the binary of same strike K:

∆+ (K ) ≡ E(Ψ+
3 − KΨ+

2 ) =
∫ ∞

K
x p(x ) dx (1.5)

The ∆ contract has the convenience of sensitivity to fat tails (or other measures of
uncertainty such as the scale of the distribution), as it extracts the "tail", segment of
the distribution above (below) K.

The idea is to compare
∫ ∞

K x p(x ) dx and
∫ ∞

K p(x ) dx and see how they react in
opposite directions to certain parameters that control the fatness of tails.
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Remark 1.7 (Symmetry/Skewness Problem).
There exists a nondegenerate distribution p*(x) with Ep∗ (X) = Ep(X) and Ep∗ (|X|s) =
Ep(|X|s) for s ≤ 2 such that:

(1.6)
sgn

(∫ ∞

K
x p∗(x) dx −

∫ ∞

K
x p(x) dx

)
= −sgn

(∫ ∞

K
p∗(x) dx −

∫ ∞

K
p(x) dx

)
Proof. The sketch of a proof is as follows. Just consider two "mirror" asymmetric
distributions, p1 and p2, with equal left and right side expectations.

With P+
p1
≡
∫ ∞

0 p1(x) dx and P−p2
≡
∫ 0
−∞ p2(x) dx, we assumed P+

p1
= P−p2

. This is
sufficient to have all moments the exact the same (should these exist) and all other
attributes in L1 as well: the distributions are identical except for the "mirror" of
positive and negative values for attributes that are allowed to have a negative sign.

We write E+
p1
≡
∫ ∞

0 x p1(x) dx and E+
p1
≡ −

∫ 0
−∞ x p2(x) dx. Since E+

p1
= −E−p2

we
can observe that all changes in the expectation of the positive (negative) side of p2
around the origin need to be offset by a change in the cumulative probability over
the same domain in opposite sign.

The argument is easily explored with discrete distributions or mixing Gaussians,
but we can make it more general with the use of continuous non-mixed ones: the
α-Stable offers the remarkable property of allowing changes in the symmetry pa-
rameter while retaining others (mean, scale, mean deviation) invariant, unlike other
distribution such as the Skew-Normal distribution that have a skew parameter that
affects the mean.9In addition to the skewness, the stable can also thus show us
precisely how we can fatten the tails while preserving other properties.

Example 1.4 (Mirror Stable distributions).
Consider two mirror α-stable distributions as shown in Figure 1.11, Sα,β,µ,σ with tail expo-
nent α = 3

2 and β = ±1, centering at µ = 0 to simplify;

p1(x) = − 3
√

2

e
(µ−x)3

27σ3

 3√3(µ−x)Ai
(

(µ−x)2

3 22/3 3√3σ2

)
σ + 3 3

√
2Ai′

(
(µ−x)2

3 22/3 3√3σ2

)
3 32/3σ

p2(x) = − 3
√

2

e
(µ−x)3

27σ3

 3√3(µ−x)Ai
(

(µ−x)2

3 22/3 3√3σ2

)
σ + 3 3

√
2Ai′

(
(x−µ)2

3 22/3 3√3σ2

)
3 32/3σ

9 For instance, the Skew-Normal N(µ, σ, β; x), where β ∈ R controls the skewness, with PDF

e
− (x−µ)2

2σ2 erfc
(

x−µ√
2σ

)
√

2πσ
, has mean

√
2
π βσ√
β2+1

+ µ and standard deviation
√

1− 2β2

π(β2+1)
σ, meaning the manipula-

tion of β leads to change in expectation and scale. The same applies to the mirrored Lognormal (where
skewness and expectation depends on variance) and the Pareto Distribution (where the tail exponent
controls the variance and the mean deviation if these exist.
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E+
p1

=
3
√

2σ

Γ
( 2

3
) , E−p1

= −
3
√

2σ

Γ
( 2

3
)

E+
p2

=
3
√

2σ

Γ
( 2

3
) , E−p2

= −
3
√

2σ

Γ
( 2

3
)

P+
p1

=
1
3

, P+
p1

=
2
3

P+
p2

=
2
3

, P+
p1

=
1
3

Moving the beta parameter which controls symmetry (and, only symmetry) to change
the distribution have the effect of moving probabilities without altering expectations.

Stochastic Volatility Divergence Let s be the scale of the distribution with density
p s (x ). Consider the ratio of densities;

∃λ : ∀K > λ , 0 < δ < 1,
1
2
( p s−δs (K ) + p s+δs (K ))

p s (K )
> 1

which is satisfied for continuous distributions with semi-concave densities.

We will ferret out situations in which
∫ ∞

K x p(x ) dx (the "Cvar" or conditional
value at risk) and

∫ ∞
K p(x ) dx (the Probability associated with "VaR" or value-

at-risk) react to tail fattening situations in opposite manner.

1.2.4 Composite/Sigmoidal Payoff Class P4

Definition 1.7 (P4 , or Composite Payoff).
Pieced together sums of n payoffs weighted by Ω j :

Ψ4 =
n

∑
j=1

Ω+
j Φ+

i>1 (K j ) + Ω−j Φ−i>1 (K j )

This is the standard arithmetically decomposable composite payoff class, if we
assume no conditions for stopping time –the ones encountered in regular exposures
without utility taken into account, as a regular exposure can be expressed as the
difference of two, more precisely Ψ+

2 (K ) − Ψ−2 (K ) , ∀K ∈ D .

Remark 1.8.
The class P4 is closed under addition.

1.3 achieving nonlinearity through P4

1.4 main errors in the literature
The main errors are as follows.
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1.5 the applicability of some psychological biases

• Binaries always belong to the class of thin-tailed distributions, because of
boundedness, while the vanillas don’t. This means the law of large num-
bers operates very rapidly there. Extreme events wane rapidly in importance:
for instance, as we will see further down in the discussion of the Chernoff
bound, the probability of a series of 1000 bets to diverge more than 50% from
the expected average is less than 1 in 1018, while the vanillas can experience
wilder fluctuations with a high probability, particularly in fat-tailed domains.
Comparing one to another can be a lunacy.

• The research literature documents a certain class of biases, such as "dread
risk" or "long shot bias", which is the overestimation of some classes of rare
events, but derived from binary variables, then falls for the severe mathe-
matical mitake of extending the result to vanillas exposures. If ecological
exposures in the real world tends to have vanillas, not binary properties, then
much of these results are invalid.

Let us return to the point that the variations of vanillas are not bounded. The
consequence is that the prediction of the vanilla is marred by Black Swan effects
and need to be considered from such a viewpoint. For instance, a few prescient
observers saw the potential for war among the Great Power of Europe in the early
20th century but virtually everyone missed the second dimension: that the war
would wind up killing an unprecedented twenty million persons.

1.5 the applicability of some psychological biases

1.6 misfitness of prediction markets

1.6.1 The Black Swan is Not About Probability But Payoff

In short, the vanilla has another dimension, the payoff, in addition to the probability,
while the binary is limited to the probability. Ignoring this additional dimension is
equivalent to living in a 3-D world but discussing it as if it were 2-D, promoting the
illusion to all who will listen that such an analysis captures all worth capturing.

Now the Black Swan problem has been misunderstood. We are saying neither
that there must be more volatility in our complexified world nor that there must be
more outliers. Indeed, we may well have fewer such events but it has been shown
that, under the mechanisms of “fat tails”, their “impact” gets larger and larger and
more and more unpredictable.

Two points.

Binary predictions are more tractable than standard ones First, binary predictions
tend to work; we can learn to be pretty good at making them (at least on short
timescales and with rapid accuracy feedback that teaches us how to distinguish
signals from noise —all possible in forecasting tournaments as well as in electoral
forecasting — see Silver, 2012). Further, these are mathematically tractable: your
worst mistake is bounded, since probability is defined on the interval between 0
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Table 2: True and False Biases in the Psychology Literature

Alleged
Bias

Misspecified
domain

Justified do-
main

Derived in
P2

Dread Risk Comparing Ter-
rorism to fall
from ladders

Comparing
risks of driving
vs flying

Overestimation
of small
probabilities

Open-ended
payoffs in fat-
tailed domains

Bounded bets
in laboratory
setting

Long shot
bias

Convex finan-
cial payoffs

Lotteries

Table 3: Adequate and inadequade decision domains

Application Questionable
domain

Justified do-
main

Prediction
markets

Revolutions Elections

Prediction
markets

"Crashes" in
Natural Mar-
kets (Finance)

Sports

Forecasting Judging by
frequency in
venture capi-
tal and other
winner take all
domains;

Judging by fre-
quency in finite
bets

and 1. But the applications of these binaries tend to be restricted to manmade
things, such as the world of games (the “ludic” domain).
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1.6 misfitness of prediction markets

It is important to note that, ironically, not only do Black Swan effects not impact
the binaries, but they even make them more mathematically tractable, as will see
further down.

Binary predictions are often taken as a substitute for standard ones Second,
most non-decision makers tend to confuse the binary and the vanilla. And well-
intentioned efforts to improve performance in binary prediction tasks can have the
unintended consequence of rendering us oblivious to catastrophic vanilla exposure.
Remark:More technically, for a heavy tailed distribution (defined as part of the subexpo-
nential family), with at least one unbounded side to the random variable (one-tailedness),
the variable prediction record over a long series will be of the same order as the best or worst
prediction, whichever in largest in absolute value, while no single outcome can change the
record of the binary.

1.6.2 Chernoff Bound

The binary is subjected to very tight bounds. Let ( Xi)1<i≤n bea sequence inde-
pendent Bernouilli trials taking values in the set {0, 1}, with P(X = 1]) = p and
P(X = 0) = 1− p, Take the sum Sn = ∑1<i≤n Xi. with expectation E(Sn)= np = µ.
Taking δ as a “distance from the mean”, the Chernoff bounds gives:
For any δ > 0

P(S ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

and for 0 < δ ≤ 1

P(S ≥ (1 + δ)µ) ≤ 2e−
µδ2

3

Let us compute the probability of coin flips n of having 50% higher than the true

mean, with p= 1
2 and µ = n

2 : P
(
S ≥

( 3
2
) n

2
)
≤ 2e−

µδ2
3 = e−n/24

which for n = 1000 happens every 1 in 1.24× 1018.

1.6.3 Fatter tails lower the probability of remote events (the binary) and raise the
value of the vanilla.

The following intuitive exercise will illustrate what happens when one conserves
the variance of a distribution, but “fattens the tails” by increasing the kurtosis.
The probability of a certain type of intermediate and large deviation drops, but
their impact increases. Counterintuitively, the possibility of staying within a band
increases.

Let x be a standard Gaussian random variable with mean 0 (with no loss of
generality) and standard deviation σ. Let P>1σ be the probability of exceeding
one standard deviation. P>1σ= 1− 1

2 erfc
(
− 1√

2

)
, where erfc is the complementary
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error function, so P>1σ = P<1σ '15.86% and the probability of staying within the
“stability tunnel” between ± 1 σ is 1− P>1σ− P<1σ ' 68.3%.

Let us fatten the tail in a variance-preserving manner, using the “barbell” stan-
dard method of linear combination of two Gaussians with two standard devia-
tions separated by σ

√
1 + a and σ

√
1− a , a ∈(0,1), where a is the “vvol” (which

is variance preserving, technically of no big effect here, as a standard deviation-
preserving spreading gives the same qualitative result). Such a method leads to

the immediate raising of the standard Kurtosis by
(
1 + a2) since

E(x4)
E(x2)

2 = 3
(
a2 + 1

)
,

where E is the expectation operator.

(1.7)
P>1σ = P<1σ

= 1− 1
2

erfc
(
− 1√

2
√

1− a

)
− 1

2
erfc

(
− 1√

2
√

a + 1

)
So then, for different values of a in Eq. 1 as we can see in Figure 2, the probability

of staying inside 1 sigma rises, “rare” events become less frequent.
Note that this example was simplified for ease of argument. In fact the “tunnel”

inside of which fat tailedness increases probabilities is between−
√

1
2

(
5−
√

17
)

σ

and
√

1
2

(
5−
√

17
)

σ (even narrower than 1 σ in the example, as it numerically cor-

responds to the area between -.66 and .66), and the outer one is ±
√

1
2

(
5 +
√

17
)

σ

, that is the area beyond ±2.13 σ.

1.6.4 The law of large numbers works better with the binary than the variable

Getting a bit more technical, the law of large numbers works much faster for the
binary than the variable (for which it may never work, see Taleb, 2013). The more
convex the payoff, the more observations one needs to make a reliable inference.
The idea is as follows, as can be illustrated by an extreme example of very tractable
binary and intractable variable.

Let xt be the realization of the random variable X ∈ (-∞, ∞) at period t, which
follows a Cauchy distribution with p.d.f. f (xt)≡ 1

π((x0−1)2+1) . Let us set x0 = 0 to
simplify and make the exposure symmetric around 0. The variable exposure maps
to the variable xt and has an expectation E (xt) =

∫ ∞
−∞ xt f (x)dx, which is undefined

(i.e., will never converge to a fixed value). A bet at x0 has a payoff mapped by as
a Heaviside Theta Function θ>x0 (xt) paying 1 if xt > x0and 0 otherwise. The ex-
pectation of the payoff is simply E(θ(x)) =

∫ ∞
−∞ θ>x0 (x) f (x)dx=

∫ ∞
x0

f (x)dx, which is
simply P(x > 0). So long as a distribution exists, the binary exists and is Bernouilli
distributed with probability of success and failure p and 1—p respectively .

The irony is that the payoff of a bet on a Cauchy, admittedly the worst possible
distribution to work with since it lacks both mean and variance, can be mapped by
a Bernouilli distribution, about the most tractable of the distributions. In this case
the variable is the hardest thing to estimate, and the binary is the easiest thing to
estimate.

Set Sn = 1
n ∑n

i=1 xti the average payoff of a variety of variable bets xti across periods
ti, and Sθ

n = 1
n ∑n

i=1 θ>x0 (xti ). No matter how large n, limn→∞ Sθ
n has the same
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1.6 misfitness of prediction markets

Binary

Vanilla

Bet 

Level

x

fHxL

Figure 1.12: The different classes of payoff f(x) seen in relation to an event x. (When consid-
ering options, the vanilla can start at a given bet level, so the payoff would be continuous on
one side, not the other).

properties — the exact same probability distribution —as S1. On the other hand
limn→∞ Sθ

n= p; further the presaymptotics of Sθ
n are tractable since it converges to 1

2

rather quickly, and the standard deviations declines at speed
√

n , since
√

V
(
Sθn
)

=√
V(Sθ

1)
n =

√
(1−p)p

n (given that the moment generating function for the average is

M(z) =
(

pez/n − p + 1
)n

).

The binary has necessarily a thin-tailed distribution, regardless of domain

More, generally, for the class of heavy tailed distributions, in a long time series, the
sum is of the same order as the maximum, which cannot be the case for the binary:

lim
X→∞

P (X > ∑n
i=1 xti )

P
(

X > max (xti )i≤2≤n

) = 1 (1.8)

Compare this to the binary for which

lim
X→∞

P
(

X > max (θ(xti ))i≤2≤n

)
= 0 (1.9)

The binary is necessarily a thin-tailed distribution, regardless of domain.
We can assert the following:

• The sum of binaries converges at a speed faster or equal to that of the variable.
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• The sum of binaries is never dominated by a single event, while that of the
variable can be.

How is the binary more robust to model error?

In the more general case, the expected payoff of the variable is expressed as
∫

A xdF(x)
(the unconditional shortfall) while that of the binary=

∫̀
A dF(x), where A is the part

of the support of interest for the exposure, typically A≡[K,∞), or (−∞,K]. Consider
model error as perturbations in the parameters that determine the calculations of
the probabilities. In the case of the variable, the perturbation’s effect on the proba-
bility is multiplied by a larger value of x.

As an example, define a slighly more complicated variable than before, with
option-like characteristics, V(α, K) ≡

∫ ∞
K x pα(x)dx and B(α, K) ≡

∫ ∞
K pα(x) dx,

where V is the expected payoff of variable, B is that of the binary, K is the
“strike” equivalent for the bet level, and with x∈[1, ∞) let pα(x) be the density
of the Pareto distribution with minimum value 1 and tail exponent α, so pα(x) ≡
αx−α−1.

Set the binary at .02, that is, a 2% probability of exceeding a certain number K,
corresponds to an α=1.2275 and a K=24.2, so the binary is expressed as B(1.2, 24.2).
Let us perturbate α, the tail exponent, to double the probability from .02 to .04. The
result is B(1.01,24.2)

B(1.2,24.2) = 2. The corresponding effect on the variable is V(1.01,24.2)
V(1.2,24.2) = 37.4.

In this case the variable was ∼18 times more sensitive than the binary.
—-

1.7 finding inconsistencies in scholarly treatments
of events

Historians and Verbalistic definition of Events

Some people fancy being in binary space when they are in fact in vanilla pay-
off/exposure space.

Historians deal with events but risk being trapped in small narratives and webs
of causation (another story). When this author made the statement that the nation-
state was much more murderous than the collection of city-states and statelings
that represented Italy, with the first war killing around 650, 000 people compared to
previous event with casualties around two orders of magnitude lower, the reaction
of historians was that no, there were many more wars in Italy before unification,
with sieges, plots, and the kind of athmosphere one finds in Machiavelli. So the
point

"History is not a quantitative hence statistical statement. It is about events
and trends".

Effectively the probability of war dropped, but the risk got bigger, yet historians
insisted that their business is not probability. Their answer was of the sort "we deal
with events defined as wars", hence they pretty much agreed that 2 wars is worse
than a single one. But then plied with the question:
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1.7 finding inconsistencies in scholarly treatments of events

Q1: Would you treat the second world war with the same "importance" as the
Falkand Island war of 1982?

If the answer to the question is "of course not", then:

Q2: Would you treat the second world war with less "importance" than the
Falkand Island war of 1982 plus the Crimean war ?

Let us play the game. With Ω the event space, define ” � ” as a binary relation
such that event A is more "important" than B if A, B ∈ Ω, A � BorA % B at least
equal to B, then it looks like we can elicit from the historian that, "in general" (being
careful about what the "general" means):

A % B if c(A) ≥ c(B)

where c : Ω → N+ is quantitative measure of casualties, measured in number of
death or similar metrics. Our questions Q1 and Q2 can establish monotonicity of
the ordering relation.

We can assert that the historian is in fact not in binary space, even if he lives
somewhat in the illusion that he is, otherwise it would lead to inconsistencies in
the simplified ordering relation.10

We can continue the game for the satisfaction of certain axioms which would
allow us to assert that in fact our judgment of historical events lines up to their risk,
which, unavoidably, is quantitative. We can even adjust for the "severity" of events,
where the binary relation is violated "except" when casualties are k greater, such
that

∃ k ≥ 1 : c(A) ≥ k c(B)⇒ ”A % B”

and still find out that, for large events, history while not being quantitative still
depends on a quantitative ranking of severity. Given that we are in the tails business
(that’s what risk is about), history is in fact convincingly vanilla not binary.

"Exposure" (Hence Risk) Needs to be Far More Rigorous Than "Science"

People claiming a "scientific" approach to risk management needs to be very care-
ful about what "science" means and how applicable it is for probabilistic decision
making. Science consists in a body of rigorously verifiable (or, equivalently, falsi-
fiable), replicable, and generalizable claims and statements –and those statements
only, nothing that doesn’t satisfy these constraints. Science scorns the particular.
It never aimed at covering all manner of exposure management, and never about
opaque matters. It is just a subset of our field of decision making. We need to
survive by making decisions that do not satisfy scientific methodologies, and can-
not wait a hundred years or so for these to be established–simply, extinction is an
absorbing barrier. So phronetic approaches such as [41] or a broader class of mat-
ters we can call "wisdom" and precautionary actions are necessary. But not abiding
by naive "evidentiary science", we embrace a larger set of human endeavors; it be-
comes necessary to build former protocols of decision akin to legal codes: rigorous,
methodological, precise, adaptable, but certainly not standard "science" per se.

10 We could go deeper and express "fuzziness" about the importance of an event or a set of events as
second-order effect similar to metaprobability modeling.

25



what is probability? what is exposure?

We will discuss the scientism later; for now consider a critical point. Textbook
knowledge is largely about "True" and "False", which doesn’t exactly map to payoff
and exposure.

Parts have been solved in the paper

Let O be a family the one-dimensional payoff functions considered as of time t0
over a certain horizon t ∈ R+ , for:

A variable X ∈ D = (d−, d+), with initial value xt0 and value xt at time of the
payoff, upper bound d+ ≥ 0 and lower bound d− ≤ d+

Let 1A be an indicator function, 1A ∈ {1,−1}, q the size of the exposure, and
P a constant(set at time t0) (meant to represent the inital outlay, investment, or
exposure).

We can define the kernel in many ways, depending on use and complexity of
payoff.

The payoff kernel can be expressed as follows. With support D and probability
measure P which is is metaprobability adjusted:

Ψ(xt, K) ≡ f (xt, K) dPt0 ,t(xt, K)

With the expectation under discussion:
∫
D Ψ(xt, K)dPt0 ,t(xt, K)

1.8 metaprobability and the payoff kernel
One must never accept a probability without probabilizing the source of the state-
ment. In other words, if someone who is your sole source of information tells you
"I am 100% certain", but you think that there is a 1% probability that the person is a
liar, the probability must no longer be treated as 100% but 99% or so, perhaps even
lower.11 If you look at trust as an "epistemological notion" (Origgi, [83]), then the
degree of trust maps directly to the metaprobability.

Risk, Uncertainty, and Layering: Historical Perspective

Principle 1.3 (The Necessity of Layering).
No probability without metaprobability. One cannot make a probabilistic statement without
considering the probability of a statement being from an unreliable source, or subjected to
measurement errors.

We can generalize to research giving certain conclusions in a dubious setup, like
many "behavioral economics" results about, say, hyperbolic discounting (aside from
the usual problem of misdefining contracts).

Definition 1.8 (Knightian Uncertainty).
It corresponds to a use of distribution with a degenerate metadistribution, i.e., fixed param-
eters devoid of stochasticity from estimation and model error.

11 I owe this to a long discussion with Paul Boghossian; it is remarkable how nonphilosophers have a
rough time thinking of the meta-issue.
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1.8 metaprobability and the payoff kernel

p= Σ ϕi pi
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Figure 1.13: The idea of metaprobability Consider that uncertainty about probability can
still get us a unique measure P equals the weighted average of the states φi, with Σφi = 1;
however the nonlinearity of the response of the probability to λ requires every possible value
of λ to be taken into account. Thus we can understand why under metaprobabilistic analysis
small uncertainty about the probability in the extreme left tail can cause matters to blow up.
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what is probability? what is exposure?

Remark 1.9 (A heuristic to spot incompetence).
There is no such thing as "Knightian risk" in the real world, but gradations of computable
risk. A good heuristic is to disqualify any adult who uses the idea of "Knightian risk" as
incompetent.

We said that no probability without a payoff, and no probability without a
metaprobability (at least), which produces a triplet 1) exposure, 2) probability, 3)
metaprobability.

Definition 1.9 (Metadistribution/Metaprobability).
Mounting any probability distribution on the probabilities or their distribution to examine
sensitivity and higher order effects. It can be done:

a) Partially: By stochasticization of parameters (s.a. stochastic variance, stochastic tail
exponents).

b) Globally: By stochasticization (subordination) of distributions.

Consider an ensemble of probability distributions, all identical except for the
probability measures (in other words, same event space, same sigma-algebra, but
different probability measures), that is (Ω,F , Pi). A variable X ∈ D = (d−, d+), with
upper bound d+ ≥ 0 and lower bound d− ≤ d+

We associate a payoff (or decision) function f with a probability p̂ of state x
and a metaprobability weight φ. The atomic payoff Φ is an integral transform. If
φ is discrete with states D = {1, 2, ..., n}, the constraint are that ∑i∈D φi = 1,and
0 ≤ φi ≤ 1. As to the probability p under concern, it can be discrete (mass function)
or continuous(density) so let us pick the continuous case for the ease of exposition.
The constaint on the probability is:

∀i ∈ D,
∫
D

p̂λi (x) dx = 1

Ψp, f ,φ(x) ≡ [p f φ](x) ≡ ∑
i∈D

f (x, λi)φi p̂λi (x). (1.10)

where λ is a hidden "driver" or parameter determining probability. The parameter
λ could be the scale of a Gaussian (variance) or Levy-Stable distribution, but could
also be the tail exponent.

In the simplified case of < xλ >= 0, i.e. when ∀λi , f (x, λi) = f (x, λ̄) where
λ̄ = ∑λi∈D φiλi , we can conveniently simplify 1.10 to:

Ψp, f ,φ(x) ≡ [p f φ](x) ≡ f (x) ∑
λi∈D

φi p̂λi (x). (1.11)

Equivalently, consider the continuous case φ(λ) : [0, 1]→ [0, 1]:

Ψp, f ,φ(x) ≡ [p f φ](x) ≡
∫
D

f (x, λ)φ(λ)p̂λ(x) dλ. (1.12)

which simplifies to:

Ψp, f ,φ(x) ≡ [p f φ](x) ≡ f (x)
∫
D

φ(λ)p̂λ(x) dλ. (1.13)
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1.8 metaprobability and the payoff kernel

In the rest of the book we can consider the simplified case –outside of more se-
rious cases of cross-dependence –and derive a metaprobality adjusted distribution,
as a measure or a density on its own. Thus:

p(x) ≡
∫
D

φ(λ)p̂λ(x) dλ

is treated as a probability density function with cumulative P.

More Complicated versions of parameter λ . The parameter in question can be
multidimentional, which greatly complicates the integration delivering the kernel.
However, note that we examine in Chapter 5 cases of the parameter λ driven by
a parameter that has its own parametrized distribution, with the parametrization
under concern too having a distribution, all the way to infinite regress for the "error
on error" when the parameter is the scale of the distribution.

Figure 1.14: Metaprobability: we add another dimension to the probability distributions, as
we consider the effect of a layer of uncertainty over the probabilities. It results in large effects
in the tails, but, visually, these are identified through changes in the "peak" at the center of
the distribution.

Figure 1.15: Fragility to Error (and Stressors): Can be seen in the slope of the sensitivity of
payoff across metadistributions

subsectionHow to extract the distribution of the payoff
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what is probability? what is exposure?

Absorbing 

Barrier

20 40 60 80 100
Time

State

Figure 1.16: A variety of temporal states for a process subjected to an absorbing barrier.
Once the absorbing barrier is hit, the process terminates, regardless of its future potential.

Note on Building a Smooth Payoff Function

θ(x) = lim
k→∞

1
2

(1 + tanh kx) = lim
k→∞

1
1 + e−2kx .

There are many other smooth, analytic approximations to the step function. Among
the possibilities are:

H(x) = lim
k→∞

(
1
2

+
1
π

arctan(kx)
)

As to sign of x

sgn(x) =
1
π

∫ ∞

−∞

sin(ux)
u

du,

which is useful for derivatives under the integral. Further, for more complex pay-
offs, in which the decision (payoff kernel) is the random variable, we can use the
convolution theorem to prove that the Fourier transform of the product of two
functions f (x) and g(x) is given as:

F [ f (x)g(x)] =
∫ +∞

−∞
F(ω′)G(ω−ω′) dω′,

the convolution of F(ω′)G(ω′), where F(ω′) and G(ω′) are the Fourier transforms of
f (x) and g(x) respectively.

These tools will be useful for working with payoffs analytically.
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1.9 classification and codification of exposures

1.9 classification and codification of exposures

Definition 1.10 (Path dependent exposure).
A path dependent exposure has the payoff function depend on all the values of the underlying
variable x between t0 and a terminal value t.

Example 1.5.

Definition 1.11 (Contingent exposure).
When in ??, K > d− and K < d+.

Definition 1.12 (Time homogeneity of exposure).

Definition 1.13 (Absorbing barriers).
A special (and most common case) of path dependent exposure and critical for risk manage-
ment.

Definition 1.14 (Decomposable payoff).

Definition 1.15 (Linear and nonlinear payoff).

Definition 1.16 (Quanto payoff).

Definition 1.17 (Asian payoff).

Definition 1.18 (Floating strike payoff).

Definition 1.19 (Multivariate scalar payoff).

1.10 numeraire definition

A critical problem with numeraire, in which the payoff is expressed, which is effec-
tively problematic in many situations where the "barbell" (to be defined in section
x) is implemented and something truly "risk-free" needs to be found. Well. only an
invariant and unchanging metric is really risk-free.

Definition 1.20 (Numeraire related payoffs).
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what is probability? what is exposure?

1.11 what is an insurable risk?

1.12 ruin problems

1.13 skepticism, uncertainty, and scale of a dis-
tributon

1.14 why pascal wager has nothing to do with the
left tail
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2 T H E " R E A L W O R L D " R I G O R
P R O J E C T

Chapter Summary 2: Outline of the book and project of the codification
of Risk and decision theory as related to the real world (that is "no BS")
in nonmathematical language (other chapters are mathematical). Introduces
the main fallacies treated in the project. What can and should be mathema-
tized. Presents the central principles of risk bearing. Introduces the idea of
fragility as a response to volatility, the associated notion of convex heuristic,
the problem of invisibility of the probability distribution and the spirit of
the book. Explains why risk is in the tails not in the variations. Explains
that the layering of random variables makes more ecological a view that is
corresponds tot the "real world" and how layering of model errors generates
fat tails.

This chapter outlines the main ideas of the book; it can be read on its own as a
summary of the project.

We start with via negativa, the definition of a negative, to show why fallacies
matter (particularly that risk analysis and management are negative activities):

Definition 2.1 (Via Negativa).
Consists in focusing on decision making by substraction, via the identification of errors. In
theology and philosophy, it is the focus on what something is not, an indirect definition. In
action, it is a recipe for what to avoid, what not to do –subtraction, not addition, say, in
medicine.

Clearly, risk management is a via negativa endeavor, avoiding a certain class of
adverse events.

Table 4: Via Negativa: Major Errors and Fallacies in This Book

Fallacy Description Section(s)

Central Risk Fallacies

Turkey Problem:
Evidentiary fallacy

Requiring evidence of risk particularly in
fat-tailed domains, violation of inferential
asymmetries (evidence comes after risk ).

Chapters 3, 6

Best Map Fallacy
Belief that a false map is unconditionally
better than no map.

Triffat Fallacy
Mistaking the inverse problem for the
problem, finding the problem to fit the
math.
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the "real world" rigor project

Table 4: (continued from previous page)

Fallacy Description Section(s)

Counter of Triffat
Fallacy

Rejection of mathematical statements with-
out showing mathematical flaw; rejection
of mathematical rigor on grounds of fail-
ures in some domains or inverse problems.

Knightian Risk Fal-
lacy

Belief that probability is ever computable
with 0 error rate, without having any
model or parameter uncertainty.

Convex Payoff Fal-
lacy

Belief that loss function and required sam-
ple size in estimator for x is the same for
f (x) when f is convex.

Section 3.11

LLN Fallacy
Belief that LLN works naively with fat
tails.

Chapter 6

Binary/Vanilla
Conflation

Crossing the Street
Fallacy

Conflating systemic and local risk.

Fallacy of Silent Ev-
idence

Survivorship bias has large effects on
small probabilities.

CLT Error

Fallacy of Silent Ev-
idence

Survivorship bias has large effects on
small probabilities.

Inferential Fallacies

Froot Insurance
fallacy/Pisano
biotech fallacy
(Harvard profes-
sors)

Making inference about mean in left/right
skewed fat tailed domains by overestimat-
ing/underestimating it respectively owing
to insufficience sample
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2.1 a course with an absurd title

Table 4: (continued from previous page)

Fallacy Description Section(s)

Pinker Fallacy, 1

(another Harvard
professor1)

Mistaking fact-checking for statistical esti-
mation.

Pinker Fallacy, 2

Underestimating the tail risk and needed
sample size for thick-tailed variables from
inference from similar thin-tailed ones.

The "n=1" Fallacy

Ignoring the effect of maximum diver-
gence (Lévy, Kolmogorov) in disconfirma-
tory empiricism. (Counterfallacy is "n
large" for confirmatory empiricism)

The powerlaw fal-
lacy

Rejecting powerlaw behavior from Log-
Log plot or similar.

2.1 a course with an absurd title
This author is currently teaching a course with the absurd title "risk management
and decision-making in the real world", a title he has selected himself; this is a total
absurdity since risk management and decision making should never have to justify
being about the real world, and what’ s worse, one should never be apologetic about
it.

In "real" disciplines, titles like "Safety in the Real World", "Biology and Medicine
in the Real World" would be lunacies. But in social science all is possible as there
is no exit from the gene pool for blunders, nothing to check the system, no skin
in the game for researchers. You cannot blame the pilot of the plane or the brain
surgeon for being "too practical", not philosophical enough; those who have done so
have exited the gene pool. The same applies to decision making under uncertainty
and incomplete information. The other absurdity in is the common separation of
risk and decision making, since risk taking requires reliability, hence our guiding
principle in the next section.

Indeed something is completely broken in risk management.
And the real world is about incompleteness : incompleteness of understanding,

representation, information, etc., what one does when one does not know what’ s
going on, or when there is a non - zero chance of not knowing what’ s going on. It
is based on focus on the unknown, not the production of mathematical certainties

1 Harvard University, because of the pressure to maintain a high status for a researcher in the academic
community, which conflicts with genuine research, provides a gold mine for those of us searching for
example of fooled by randomness effects.
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Science/Evidentiary (A)

Practice
Real Life

(B)

Math/Logic (C)

(A ⋃ B ⋃ C) ⋂ (A ⋂ B)' ⋂ (B ⋂ C)' ⋂ (A ⋂ C)'

"Evidence" without

rigor

Math without

subtance

Fooled by 

Randomness 

Figure 2.1: Wrong! The Symmetric
Difference of the Three Sets The un-
happy merger of theory and prac-
tice. Most academics and practi-
tioners of risk and probability do
not understand what "intersection"
means. This explains why Wall
Street "quants" blow up. It is hard
trying to explain that yes, it is very
mathematical but bringing what we
call a math genius or acrobat won’t
do. It is jointly mathematical and
practical.
"Math/Logic" includes probability
theory, logic, philosophy.
"Practice" includes ancestral heuris-
tics, inherited tricks and is largely
convex, precautionary and via nega-
tiva .

Science (A)

Practice (B) Math (C)

(B � C) � (A�B�C)

��������	
��
Formalize/
Expand 
Intersection. 
B � (B�C) 
not reverse

Figure 2.2: The Right Way: Intersec-
tion is Not Sum The rigorous way
to formalize and teach probability
and risk (though not to make deci-
sions).
"Evidentiary" science is not ro-
bust enough in dealing with the
unknown compared to heuris-
tic decision-making. So this is
about what we can talk about in
words/print and lecture about, i.e.,
an explicit methodology.
The progress to "rigorify" practice
consists in expanding the intersec-
tion by formalizing as much of B (i.e.
learned rules of thumb) as possible.
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2.1 a course with an absurd title

based on weak assumptions; rather measure the robustness of the exposure to the
unknown, which can be done mathematically through metamodel (a model that
examines the effectiveness and reliability of the model by examining robustness to
perturbation), what we call metaprobability, even if the meta-approach to the model
is not strictly probabilistic.

Definition 2.2 (Rule).
A rule in this project is a decision-making convex heuristic as defined in 2.4 page 48 that
operates under a "broad set of circumtances" (that is, not concave under parameter per-
turbation as defined in Chapter 17). As illustrated in figures 2.1 and 2.2, a rule needs
to lie outside the set (A ∪ B ∪ C) ∩ (A ∩ B)′ ∩ (B ∩ C)′ ∩ (A ∩ C)′ (where ’ denotes the
complement of the set).

Unlike a theorem, which depends on a specific (and closed) set of assumptions,
a rule holds across a broad range of environments – which is precisely the point.
In that sense it is more rigorous than a theorem for decision-making, as it is in
consequence space, concerning f (x), not truth space, the properties of x as defined
in 2.3.

Definition 2.3 (Evidentiary v/s Precautionary Approaches).
(a) Evidentiary risk analysis consists in looking at properties of statistically derived empiri-
cial estimators as mapped in 3.2 page 66 and their loss functions as expressed in 3.4.

(b) Precautionary approaches are decisions based on absence of data, evidence, and clarity
about the properties in the tails of the distribution. They consist in mapping using stabil-
ity of the loss function under parametric perturbation or change in probability structure
(fragility analysis) using methods defined in Chapter 17 (with summary in 2.4).

As shown in Table 5, in effect Evidentiary is narrowly probabilistic, while precau-
tionary is metaprobabilistic (metaprobabilistic is defined in 1.9 on page 28).

Remark 2.1.
Tail risks and extreme deviations cannot be assessed solely by evidentiary methods, simply
because of absence of rare events in past samples.

The point is deepened in Chapter 3

Figure 2.2 shows how and where mathematics imparts a necessary rigor in some
places, at the intersection of theory and practice; and these are the areas we can
discuss in this book. And the notion of intersection is not to be taken casually,
owing to the inverse problem explained in section 2.2.

Principle 2.1 (Mathematics debunks mathematics).
Mathematical "charlatanry" and fallacies in probabilities should be debunked using mathe-
matics and mathematical arguments first.

Simply, the statement "everything cannot be mathematized", can be true, but
"things that are falsely mathematized" can be detected from 1) assumptions, 2)
richness of model, 3) inner sensitivity of model to parametric or distributional per-
turbations. For instance, we can show how "Value-at-Risk" fails by mathematical
methods, using distibutional perturbations.
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Table 5: The Difference Between Statistical/Evidentiary and Fragility-Based Risk Manage-
ment

Evidentiary Risk
Management

Analytical and Precautionary Risk Man-
agement

Statistical/Actuarial
Based Model Based Fragility Based

Relies on past

Relies on the-
oretical model
(with statistical
backup/backtesting)

Relies on present
attributes of ob-
ject

Probabilistic? Probabilistic Probabilistic

Nonprobabilistic
or indirectly
probabilistic
(only reasoning is
probabilistic)

Typical
Methods

Times series
statistics, etc.

Use of estimated
probability distri-
bution Forecasting
models

Detection of non-
linearity through
heuristics

Expression Variance, Value at
Risk

Variance, Value at
Risk, Tail exposure,
(Shortfall)

Fragility Indica-
tor, Heuristics

Characteristic
Dependence on
both past sample
and parameters

Dependence on pa-
rameters

Dependence
on detection of
second order
effects

Performance Erratic, Unreli-
able for tails

Erratic, Unreliable
for tails

Robust, Focused
on tails

2.2 problems and inverse problems
Definition 2.4 (The inverse problem.).
There are many more degrees of freedom (hence probability of making a mistake) when one
goes from a model to the real world than when one goes from the real world to the model.

From The Black Swan, [110]

Operation 1 (the melting ice cube): Imagine an ice cube and consider how it
may melt over the next two hours while you play a few rounds of poker with
your friends. Try to envision the shape of the resulting puddle.

Operation 2 (where did the water come from?): Consider a puddle of water
on the floor. Now try to reconstruct in your mind’s eye the shape of the ice
cube it may once have been. Note that the puddle may not have necessarily
originated from an ice cube.

One can show probabilistically the misfitness of mathematics to many problems
where it is used. It is much more rigorous and safer to start with a disease then
look at the classes of drugs that can help (if any, or perhaps consider that no drug
can be a potent alternative), than to start with a drug, then find some ailment that
matches it, with the serious risk of mismatch. Believe it or not, the latter was the
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2.2 problems and inverse problems

norm at the turn of last century, before the FDA got involved. People took drugs
for the sake of taking drugs, particularly during the snake oil days.

From Antifragile [111]:There is such a
thing as "real world" applied mathemat-
ics: find a problem first, and look for the
mathematical methods that works for it
(just as one acquires language), rather
than study in a vacuum through theo-
rems and artificial examples, then find
some confirmatory representation of real-
ity that makes it look like these examples.

What we are saying here is now ac-
cepted logic in healthcare but people
don’t get it when we change domains.
In mathematics it is much better to
start with a real problem, understand
it well on its own terms, then go find a
mathematical tool (if any, or use noth-
ing as is often the best solution) than
start with mathematical theorems then
find some application to these. The dif-
ference (that between problem and in-
verse problem) is monstrous as the de-
grees of freedom are much narrower in
the foreward than the backward equa-
tion, sort of). To cite Donald Geman (private communication), there are tens of
thousands theorems one can elaborate and prove, all of which may seem to find
some application in the real world, particularly if one looks hard (a process simi-
lar to what George Box calls "torturing" the data). But applying the idea of non-
reversibility of the mechanism: there are very, very few theorems that can corre-
spond to an exact selected problem. In the end this leaves us with a restrictive
definition of what "rigor" means. But people don’t get that point there. The entire
fields of mathematical economics and quantitative finance are based on that fab-
rication. Having a tool in your mind and looking for an application leads to the
narrative fallacy.

The point will be discussed in Chapter 8 in the context of statistical data mining.

Nevertheless, once one got the math for it, stay with the math. Probabilistic
problems can only be explained mathematically. We discovered that it is impos-
sible to explain the difference thin tails/fat tails (Mediocristan/Extremistan)
without mathematics. The same with the notion of "ruin".

This also explains why schooling is dangerous as it gives the illusion of the arrow
theory→ practice. Replace math with theory and you get an idea of what I call the
green lumber fallacy in Antifragile.

An associated result is to ignore reality. Simply, risk management is about pre-
cautionary notes, cannot be separated from effect, the payoff, again, in the "real
world", so the saying "this works in theory" but not in practice is nonsensical. And
often people claim after a large blowup my model is right but there are "outliers"
not realizing that we don’t care about their model but the blowup.

Inverse Problem of Statistical Data

Principle 2.2 (Visibility of the Generator).
In the real world one sees time series of events, not the generator of events, unless one is
himself fabricating the data.
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Figure 2.3: Naive evidentiary em-
piricism at work in treating poten-
tial epidemics as a scare. They com-
pare number of past death, not tak-
ing into account acceleration (sec-
ond order effects). While the other
conditions were stable, ebola at the
time was growing by 14 % a week.

Science/Evidentiary (A)

Practice
Real Life

(B)

Math/Logic (C)

Figure 2.4: The way naive "empir-
ical", say pro-GMOs science view
nonevidentiary risk. In fact the real
meaning of "empirical" is rigor in fo-
cusing on the unknown, hence the
designation "skeptical empirical".
Empiricism requires logic (hence
skepticism) but logic does not re-
quire empiricism.
The point becomes dicey when we
look at mechanistic uses of statistics
–parrotlike– and evidence by social
scientists. One of the manifestation
is the inability to think in nonev-
identiary terms with the classical
"where is the evidence?" mistake.
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This section will illustrate the general methodology in detecting potential model
error and provides a glimpse at rigorous "real world" decision-making.

The best way to figure out if someone is using an erroneous statistical technique
is to apply such a technique on a dataset for which you have the answer. The
best way to know the exact properties ex ante to generate it by Monte Carlo. So the
technique throughout the book is to generate fat-tailed data, the properties of which
we know with precision, and check how standard and mechanistic methods used
by researchers and practitioners detect the true properties, then show the wedge
between observed and true properties.

The focus will be, of course, on the effect of the law of large numbers.

1 2 3 4
x

PrHxL

10 20 30 40
x

PrHxL

Additional Variation

Apparently 

degenerate case

More data shows

 nondegeneracy

Figure 2.5: The Masquerade Problem (or Central Asymmetry in Inference). To the left, a
degenerate random variable taking seemingly constant values, with a histogram producing
a Dirac stick. One cannot rule out nondegeneracy. But the right plot exhibits more than one
realization. Here one can rule out degeneracy. This central asymmetry can be generalized
and put some rigor into statements like "failure to reject" as the notion of what is rejected
needs to be refined. We produce rules in Chapter 4.
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Figure 2.6: "The probabilistic veil". Taleb and Pilpel (2000,2004) cover the point from
an epistemological standpoint with the "veil" thought experiment by which an observer
is supplied with data (generated by someone with "perfect statistical information", that
is, producing it from a generator of time series). The observer, not knowing the gener-
ating process, and basing his information on data and data only, would have to come up
with an estimate of the statistical properties (probabilities, mean, variance, value-at-risk,
etc.). Clearly, the observer having incomplete information about the generator, and no
reliable theory about what the data corresponds to, will always make mistakes, but
these mistakes have a certain pattern. This is the central problem of risk management.

The example in Figure 2.6 provides an idea of the methodolody, and Chapter 4

produces a formal "hierarchy" of statements that can be made by such an observer
without violating a certain inferential rigor. For instance he can "reject" that the data
is Gaussian, but not accept it as easily. And he can produce inequalities or "lower
bound estimates" on, say, variance, never "estimates" in the standard sense since he
has no idea about the generator and standard estimates require some associated
statement about the generator.

Definition 2.5.
(Arbitrage of Probability Measure). A probability measure µA can be arbitraged if one can
produce data fitting another probability measure µB and systematically fool the observer
that it is µA based on his metrics in assessing the validity of the measure.

Chapter 4 will rank probability measures along this arbitrage criterion.
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Shortfall
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Figure 2.7: The "true" distribution
as expected from the Monte Carlo
generator
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Figure 2.8: A typical realization,
that is, an observed distribution for
N = 103

Example of Finite Mean and Infinite Variance This example illustrates two biases:
underestimation of the mean in the presence of skewed fat-tailed data, and illusion
of finiteness of variance (sort of underestimation).

Let us say that x follows a version of Pareto Distribution with density p(x),

p(x) =


αk−1/γ(−µ−x)

1
γ−1

((
k

−µ−x

)−1/γ
+1
)−α−1

γ µ + x ≤ 0

0 otherwise
(2.1)

By generating a Monte Carlo sample of size N with parameters α = 3/2, µ = 1, k =
2, and γ = 3/4 and sending it to a friendly researcher to ask him to derive the
properties, we can easily gauge what can "fool" him. We generate M runs of N-
sequence random variates ((xj

i )
N
i=1)M

j=1
The expected "true" mean is:

E(x) =

{
k Γ(γ+1)Γ(α−γ)

Γ(α) + µ α > γ

Indeterminate otherwise

and the "true" variance:

V(x) =


k2(Γ(α)Γ(2γ+1)Γ(α−2γ)−Γ(γ+1)2Γ(α−γ)2)

Γ(α)2 α > 2γ

Indeterminate otherwise
(2.2)
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Figure 2.9: The Recovered Standard
Deviation, which we insist, is infinite.
This means that every run j would
deliver a different average

which in our case is "infinite". Now a friendly researcher is likely to mistake the
mean, since about 6̃0% of the measurements will produce a higher value than the
true mean, and, most certainly likely to mistake the variance (it is infinite and any
finite number is a mistake).

Further, about 73% of observations fall above the true mean. The CDF= 1 −((
Γ(γ+1)Γ(α−γ)

Γ(α)

) 1
γ + 1

)−α

where Γ is the Euler Gamma function Γ(z) =
∫ ∞

0 e−ttz−1 dt.

As to the expected shortfall, S(K) ≡
∫ K
−∞ x p(x) dx∫ K
−∞ p(x) dx

, close to 67% of the observations

underestimate the "tail risk" below 1% and 99% for more severe risks. This exercise
was a standard one but there are many more complicated distributions than the
ones we played with.

Good News: Rules for Decision Theory

Table 6 provides a robust approach to the problem.

The good news is that the real world is about exposures, and exposures are
asymmetric, leading us to focus on two aspects: 1) probability is about bounds,
2) the asymmetry leads to convexities in response, which is the focus of this text.
Note that, thanks to inequalities and bounds (some tight, some less tight), the use
of the classical theorems of probability theory can lead to classes of qualitative
precautionary decisions that, ironically, do not rely on the computation of specific
probabilities.
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Table 6: General Rules of Risk Engineering

Rules Description
R1 Dutch Book Probabilities need to add up to 1* − but cannot ex-

ceed 1

R1
′

Inequalities It is more rigorous to work with probability in-
equalities and bounds than probabilistic estimates.

R2 Asymmetry Some errors have consequences that are largely, and
clearly one sided.**

R3 Nonlinear Re-
sponse

Fragility is more measurable than probability***

R4 Conditional Pre-
cautionary Princi-
ple

Domain specific precautionary, based on fat tailed-
ness of errors and asymmetry of payoff.

R5 Decisions Exposures ( f (x))can be more reliably modified, in-
stead of relying on computing probabilities of x.

* The Dutch book can be expressed, using the spirit of quantitative finance, as a no arbitrage
situation, that is, no linear combination of payoffs can deliver a negative probability or one
that exceeds 1. This and the corrollary that there is a non-zero probability of visible and
known states spanned by the probability distribution adding up to <1 confers to probability
theory, when used properly, a certain analytical robustness.

** Consider a plane ride. Disturbances are more likely to delay (or worsen) the flight than
accelerate it or improve it. This is the concave case. The opposite is innovation and tinkering,
the convex case.

*** The errors in measuring nonlinearity of responses are more robust and smaller than those
in measuring responses. (Transfer theorems).
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Figure 2.10: The risk of breakage of the
coffee cup is not necessarily in the past
time series of the variable; in fact surviv-
ing objects have to have had a "rosy" past.
Further, fragile objects are disproportion-
ally more vulnerable to tail events than
ordinary ones –by the concavity argu-
ment.

The Supreme Scientific Rigor of The Russian School of Probability One
can believe in the rigor of mathematical statements about probability without
falling into the trap of providing naive computations subjected to model error.
If this author were to belong to a school of thought designated by a nationality,
the

{Nationality} school of {discipline},
it would be the Russian school of probability.
Members across three generations: P.L. Chebyshev, A.A. Markov, A.M. Lya-
punov, S.N. Bernshtein (ie. Bernstein), E.E. Slutskii, N.V. Smirnov, L.N.
Bol’shev, V.I. Romanovskii, A.N. Kolmogorov, Yu.V. Linnik, and the new gen-
eration: V. Petrov, A.N. Nagaev, A. Shyrayev, and a few more.
They had something rather potent in the history of scientific thought: they
thought in inequalities, not equalities (most famous: Markov, Chebyshev, Bern-
stein, Lyapunov). They used bounds, not estimates. Even their central limit
version was a matter of bounds, which we exploit later by seeing what takes
place outside the bounds. They were world apart from the new generation of
users who think in terms of precise probability –or worse, mechanistic social
scientists. Their method accommodates skepticism, one-sided thinking: "A is
> x, AO(x) [Big-O: "of order" x], rather than A = x.
For those working on integrating the mathematical rigor in risk bearing they
provide a great source. We always know one-side, not the other. We know
the lowest value we are willing to pay for insurance, not necessarily the upper
bound (or vice versa).a

a The way this connects to robustness, which we will formalize next section, is as follows. Is robust
what does not change across perturbation of parameters of the probability distribution; this is the
core of the idea in Part II with our focus on fragility and antifragility. The point is refined with
concave or convex to such perturbations.
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2.3 fragility, not just statistics, for hidden risks
Let us start with a sketch of the general solution to the problem of risk and proba-
bility, just to show that there is a solution (it will take an entire book to get there).
The following section will outline both the problem and the methodology.

This reposes on the central idea that an assessment of fragility −and control of
such fragility−is more ususeful, and more reliable,than probabilistic risk manage-
ment and data-based methods of risk detection.

In a letter to Nature about the book Anti f ragile[111]: Fragility (the focus of Part
III of this volume) can be defined as an accelerating sensitivity to a harmful stressor:
this response plots as a concave curve and mathematically culminates in more harm
than benefit from the disorder cluster: (i) uncertainty, (ii) variability, (iii) imperfect,
incomplete knowledge, (iv) chance, (v) chaos, (vi) volatility, (vii) disorder, (viii)
entropy, (ix) time, (x) the unknown, (xi) randomness, (xii) turmoil, (xiii) stressor,
(xiv) error, (xv) dispersion of outcomes, (xvi) unknowledge.

Antifragility is the opposite, producing a convex response that leads to more ben-
efit than harm. We do not need to know the history and statistics of an item to
measure its fragility or antifragility, or to be able to predict rare and random (’Black
Swan’) events. All we need is to be able to assess whether the item is accelerating
towards harm or benefit.

Same with model errors –as we subject models to additional layers of uncertainty.
The relation of fragility, convexity and sensitivity to disorder is thus mathematical

and not derived from empirical data.
The problem with risk management is that "past" time series can be (and actually

are) unreliable. Some finance journalist was commenting on the statement in An-
tifragile about our chronic inability to get the risk of a variable from the past with
economic time series, with associated overconfidence. "Where is he going to get
the risk from since we cannot get it from the past? from the future?", he wrote. Not
really, it is staring at us: from the present, the present state of the system. This explains
in a way why the detection of fragility is vastly more potent than that of risk –and
much easier to do. We can use the past to derive general statistical statements, of
course, coupled with rigorous probabilistic inference but it is unwise to think that
the data unconditionally yields precise probabilities, as we discuss next.

Asymmetry and Insufficiency of Past Data Our focus on fragility does not mean
you can ignore the past history of an object for risk management, it is just accepting
that the past is highly insufficient.

The past is also highly asymmetric. There are instances (large deviations) for which
the past reveals extremely valuable information about the risk of a process. Some-
thing that broke once before is breakable, but we cannot ascertain that what did
not break is unbreakable. This asymmetry is extremely valuable with fat tails, as
we can reject some theories, and get to the truth by means of negative inference, via
negativa.

This confusion about the nature of empiricism, or the difference between empiri-
cism (rejection) and naive empiricism (anecdotal acceptance) is not just a problem
with journalism. As we will see in Chapter x, it pervades social science and areas
of science supported by statistical analyses. Yet naive inference from time series
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is incompatible with rigorous statistical inference; yet many workers with time se-
ries believe that it is statistical inference. One has to think of history as a sample
path, just as one looks at a sample from a large population, and continuously keep
in mind how representative the sample is of the large population. While analyti-
cally equivalent, it is psychologically hard to take what Daniel Kahneman calls the
"outside view", given that we are all part of history, part of the sample so to speak.

Let us now look at the point more formally, as the difference between an assess-
ment of fragility and that of statistical knowledge can be mapped into the difference
between x and f (x)

This will ease us into the "engineering" notion as opposed to other approaches to
decision-making.

2.4 solution: the convex heuristic
Next we give the reader a hint of the methodology and proposed approach with a
semi-informal technical definition for now.

In his own discussion of the Borel-Cantelli lemma (the version popularly known
as "monkeys on a typewriter")[13], Emile Borel explained that some events can be
considered mathematically possible, but practically impossible. There exists a class
of statements that are mathematically rigorous but practically nonsense, and vice
versa.

If, in addition, one shifts from "truth space" to consequence space", in other words
focus on (a function of) the payoff of events in addition to probability, rather than
just their probability, then the ranking becomes even more acute and stark, shifting,
as we will see, the discussion from probability to the richer one of fragility. In
this book we will include costs of events as part of fragility, expressed as fragility
under parameter perturbation. Chapter 5 discusses robustness under perturbation
or metamodels (or metaprobability). But here is the preview of the idea of convex
heuristic, which in plain English, is at least robust to model uncertainty.

Definition 2.6 (Convex Heuristic).
In short what exposure is required to not produce concave responses under parameter per-
turbation.

Summary of a Convex Heuristic (from Chapter 17) Let { fi} be the family
of possible functions, as "exposures" to x a random variable with probability
measure λσ− (x), where σ− is a parameter determining the scale (say, mean
absolute deviation) on the left side of the distribution (below the mean). A
decision rule is said "nonconcave" for payoff below K with respect to σ− up to
perturbation ∆ if, taking the partial expected payoff

EK
σ− ( fi) =

∫ K

−∞
fi(x) dλσ− (x),

fi is deemed member of the family of convex heuristics Hx,K,σ− ,∆,etc.:
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{
fi :

1
2

(
EK

σ−−∆( fi) + EK
σ−+∆( fi)

)
≥ EK

σ− ( fi)
}

Note that we call these decision rules "convex" in H not necessarily because they
have a convex payoff, but also because, thanks to the introduction of payoff f , their
payoff ends up comparatively "more convex" than otherwise. In that sense, finding
protection is a convex act.

Outline of Properties (nonmathematical) of Convex Heuristics
Their aim is not to be "right" and avoid errors, but to ensure that errors remain
small in consequences.

Definition 2.7.
A convex heuristic is a decision rule with the following properties:

• Compactness: It is easy to remember, implement, use, and transmit.

• Consequences, not truth: It is about what it helps you do, not whether it is true
or false. It should be judged not in "truth space" but in "consequence space."

• Antifragility: It is required to have a benefit when it is helpful larger than the
loss when it is harmful. Thus it will eventually deliver gains from disorder.

• Robustness: It satisfies the fragility-based precautionary principle.

• Opacity: You do not need to understand how it works.

• Survivability of populations: Such a heuristic should not be judged solely on
its intelligibility (how understandable it is), but on its survivability, or on a
combination of intelligibility and survivability. Thus a long-surviving heuristic
is less fragile than a newly emerging one. But ultimately it should never be
assessed in its survival against other ideas, rather on the survival advantage it
gave the populations who used it.

The idea that makes life easy is that we can capture model uncertainty (and
model error) with simple tricks, namely the scale of the distribution.

2.4.1 Convex Heuristics, Rationality, and Revelation of Preferences

One brilliant contribution by economists is the concept of "cheap talk", or the differ-
ence between "stated preferences" (what you say) and "revealed preferences" (those
that can be inferred from actions). Actions are louder than words: what people
say (in opinion polls or elsewhere) isn’t as relevant, as individuals reveal their pref-
erences with hard cash or, more generally costly action, or even more generally
risky action (which, invariably, brings us to skin in the game). This is why opinion
polls are considered largely entertainment. Further, the notion of "belief" is largely
misunderstood.

Those who engage in actions that threaten their survival will eventually disap-
pear, if their skin is in their game. Same with populations with the wrong heuristics.
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Belief is deeply connected to probability (belief in the epistemic sense). Which
means that violations of probability axioms and bounds can imply irrationality.

We showed here that the notion of "probability" raw is largely verbalistic and
empty (probability maps to "degrees of belief" mathematically, is b̃elief), largely
incomplete, more "binary" while revealed preferences via decisions is what matters
(more technically probability is something deeply mathematical, useless on its own,
an integral transform into something larger, and cannot be "summarized" in words).
And decisions and decisions only can be a metric for "rationality"

Psychologists and journalistic types who make a living attacking "overreactions"
and bubbles based on superficial assessments typically discuss "rationality" without
getting what rationality means in its the decision-theoretic sense (the only defini-
tion that can be consistent, in terms of absence of violations of the standard axioms
[CITE AXIOMS] and only from actions). But as we saw with convex heuristics
the cause behind an action leading to survival is not necessarily apparent. Many
seemingly irrational actions have led populations to survive. Dread risk and over-
reactions aren’t just rational, but may be the only way to survive in some domains.
[Cite Taleb and Read]

As an interesting application, one can even show that it is rational to "believe" in
the supernatural if it leads to an increase in survival –as a side effect. 2

This point matters a bit since "rational" in risk-taking needs to have a broader
definition than "act according to model X-Y-Z" which can be incomplete. Hence the
connection to metaprobability.

2.5 fragility and model error
Crucially, we can gauge the nonlinear response to a parameter of a model using the
same method and map "fragility to model error". For instance a small perturbation
in the parameters entering the probability provides a one-sided increase of the
likelihood of event (a convex response), then we can declare the model as unsafe
(as with the assessments of Fukushima or the conventional Value-at-Risk models
where small parameters variance more probabilities by 3 orders of magnitude). This
method is fundamentally option-theoretic.

2.5.1 Why Engineering?

[Discussion of the problem- A personal record of the difference between measure-
ment and working on reliability. The various debates.]

Risk is not Variations

On the common confustion between risk and variations. Risk is tail events, neces-
sarily.

2 Many authors claim to be arbiters of "rationality" and, as we can see in Chapter on meta-distribution
and the debunking of "pseudo-biases", accuse others of irrationality, but cannot come up with a co-
herent definition of rationality (unless model dependent, which means that a breakdown of a model
or misspecification can justify actions otherwise deemed "irrational"); we can however certainly define
irrationality in terms of violations of a certain set of axioms, so our definition is via negativa.
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What Do Fat Tails Have to Do With This?

The focus is squarely on "fat tails", since risks and harm lie principally in the high-
impact events, The Black Swan and some statistical methods fail us there. But they
do so predictably. We end Part I with an identification of classes of exposures
to these risks, the Fourth Quadrant idea, the class of decisions that do not lend
themselves to modelization and need to be avoided − in other words where x is so
reliable that one needs an f (x) that clips the left tail, hence allows for a computation
of the potential shortfall. Again, to repat, it is more, much more rigorous to modify
your decisions.

Fat Tails and Model Expansion

Next wee see how model uncertainty (or, within models, parameter uncertainty),
or more generally, adding layers of randomness, cause fat tails.

Part I of this volume presents a mathematical approach for dealing with errors in
conventional probability models For instance, if a "rigorously" derived model (say
Markowitz mean variance, or Extreme Value Theory) gives a precise risk measure,
but ignores the central fact that the parameters of the model don’ t fall from the sky,
but have some error rate in their estimation, then the model is not rigorous for risk
management, decision making in the real world, or, for that matter, for anything.

So we may need to add another layer of uncertainty, which invalidates some
models but not others. The mathematical rigor is therefore shifted from focus on
asymptotic (but rather irrelevant because inapplicable) properties to making do
with a certain set of incompleteness and preasymptotics. Indeed there is a mathe-
matical way to deal with incompletness. Adding disorder has a one-sided effect and
we can deductively estimate its lower bound. For instance we can figure out from
second order effects that tail probabilities and risk measures are understimated in
some class of models.

Savage’s Difference Between The Small and Large World

Ecologizing decision-making Luckily there is a profound literature on satisficing
and various decision-making heuristics, starting with Herb Simon and continuing
through various traditions delving into ecological rationality, [103], [48], [114]: in
fact Leonard Savage’s difference between small and large worlds will be the basis
of Part I, which we can actually map mathematically.

Method: We cannot probe the Real World but we can get an idea (via perturba-
tions) of relevant directions of the effects and difficulties coming from incomplete-
ness, and make statements s.a. "incompleteness slows convergence to LLN by at
least a factor of nα”, or "increases the number of observations to make a certain
statement by at least 2x".

So adding a layer of uncertainty to the representation in the form of model error,
or metaprobability has a one-sided effect: expansion of ΩS with following results:
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Figure 2.11: A Version of Savage’s Small World/Large World Problem. In statistical domains
assume Small World= coin tosses and Large World = Real World. Note that measure theory
is not the small world, but large world, thanks to the degrees of freedom it confers.

i) Fat tails:
i-a)- Randomness at the level of the scale of the distribution generates fat tails.
(Multi-level stochastic volatility).
i-b)- Model error in all its forms generates fat tails.
i-c) - Convexity of probability measures to uncertainty causes fat tails.
ii) Law of Large Numbers(weak): operates much more slowly, if ever at all.
"P-values" are biased lower.
iii) Risk is larger than the conventional measures derived in ΩS, particularly
for payoffs in the tail.
iv) Allocations from optimal control and other theories (portfolio theory) have
a higher variance than shown, hence increase risk.
v) The problem of induction is more acute.(epistemic opacity).
vi)The problem is more acute for convex payoffs, and simpler for concave ones.

Now i)⇒ ii) through vi).

Risk (and decisions) require more rigor than other applications of statistical in-
ference.
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Coin tosses are not quite "real world" probability

In his wonderful textbook [15], Leo Breiman referred to probability as having two
sides, the left side represented by his teacher, Michel Loève, which concerned itself
with formalism and measure theory, and the right one which is typically associ-
ated with coin tosses and similar applications. Many have the illusion that the "real
world" would be closer to the coin tosses. It is not: coin tosses are fake practice for
probability theory, artificial setups in which people know the probability (what is
called the ludic fallacy in The Black Swan), and where bets are bounded, hence in-
sensitive to problems of extreme fat tails. Ironically, measure theory, while formal,
is less constraining and can set us free from these narrow structures. Its abstraction
allows the expansion out of the small box, all the while remaining rigorous, in fact,
at the highest possible level of rigor. Plenty of damage has been brought by the
illusion that the coin toss model provides a "realistic" approach to the discipline,
as we see in Chapter x, it leads to the random walk and the associated pathologies
with a certain class of unbounded variables.

2.6 general classification of problems related to
fat tails

The Black Swan Problem Incomputability of Small Probalility: It is is not merely
that events in the tails of the distributions matter, happen, play a large role, etc. The
point is that these events play the major role for some classes of random variables
and their probabilities are not computable, not reliable for any effective use. And
the smaller the probability, the larger the error, affecting events of high impact.
The idea is to work with measures that are less sensitive to the issue (a statistical
approch), or conceive exposures less affected by it (a decision theoric approach).
Mathematically, the problem arises from the use of degenerate metaprobability.

In fact the central point is the 4th quadrant where prevails both high-impact and
non-measurability, where the max of the random variable determines most of the
properties (which to repeat, has not computable probabilities).

Definition 2.8 (Degenerate Metaprobability).
Indicates a single layer of stochasticity, such as a model with certain parameters.

Remark 2.2 (Knightian Risk).
Degenerate metaprobability would be largely "Knightian Risk" when distribution under
concern has a finite first moment.

We will rank probability measures along this arbitrage criterion.

Associated Specific "Black Swan Blindness" Errors (Applying Thin-Tailed Met-
rics to Fat Tailed Domains) These are shockingly common, arising from mechanis-
tic reliance on software or textbook items (or a culture of bad statistical insight).We
skip the elementary "Pinker" error of mistaking journalistic fact - checking for sci-
entific statistical "evidence" and focus on less obvious but equally dangerous ones.
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Problem Description Chapters

1 Preasymptotics,
Incomplete Con-
vergence

The real world is before the
asymptote. This affects the ap-
plications (under fat tails) of the
Law of Large Numbers and the
Central Limit Theorem.

?

2 Inverse Problems a) The direction Model ⇒ Real-
ity produces larger biases than
Reality⇒ Model
b) Some models can be "arbi-
traged" in one direction, not the
other .

1,?,?

3 Degenerate
Metaprobability

Uncertainty about the proba-
bility distributions can be ex-
pressed as additional layer of
uncertainty, or, simpler, errors,
hence nested series of errors on
errors. The Black Swan problem
can be summarized as degener-
ate metaprobability.3

1. Overinference: Making an inference from fat-tailed data assuming sample
size allows claims (very common in social science). Chapter 3.

2. Underinference: Assuming N=1 is insufficient under large deviations. Chap-
ters 1 and 3.

(In other words both these errors lead to refusing true inference and accepting
anecdote as "evidence")

3. Asymmetry: Fat-tailed probability distributions can masquerade as thin tailed
("great moderation", "long peace"), not the opposite.

4. The econometric ( very severe) violation in using standard deviations and vari-
ances as a measure of dispersion without ascertaining the stability of the
fourth moment (G.G) . This error alone allows us to discard everything in
economics/econometrics using σ as irresponsible nonsense (with a narrow
set of exceptions).

5. Making claims about "robust" statistics in the tails. Chapter 3.

6. Assuming that the errors in the estimation of x apply to f(x) ( very severe).

7. Mistaking the properties of "Bets" and "digital predictions" for those of Vanilla
exposures, with such things as "prediction markets". Chapter 9.

8. Fitting tail exponents power laws in interpolative manner. Chapters 2, 6

9. Misuse of Kolmogorov-Smirnov and other methods for fitness of probability
distribution. Chapter 3.
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10. Calibration of small probabilities relying on sample size and not augmenting
the total sample by a function of 1/p , where p is the probability to estimate.

11. Considering ArrowDebreu State Space as exhaustive rather than sum of known
probabilities ≤ 1

2.7 closing the introduction
We close the introduction with De Finetti’s introduction to his course "On Probabil-
ity":

The course, with a deliberately generic title will deal with the conceptual
and controversial questions on the subject of probability: questions which it is
necessary to resolve, one way or another, so that the development of reasoning is
not reduced to a mere formalistic game of mathematical expressions or to vacuous and
simplistic pseudophilosophical statements or allegedly practical claims. (emph.
mine.)

The next appendix deplores academic treatment of probability so we get it out of
the way.
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A W H AT ’ S A C H A R L ATA N I N R I S K
A N D P R O B A B I L I T Y ?

We start with a clean definition of charlatan. Many of us spend time fighting with
charlatans; we need a cursory and useable definition that is both compatible with
our probability business and the historical understanding of the snake-oil salesman.

a.1 charlatan

Definition A.1 (Charlatan).
In our context someone who meets at least two of the following. He

i- proposes complicated practical solutions to a problem that may or may not exist or has
a practical simpler and less costly alternative

ii- favors unconditional via positiva over via negativa

iii- has small or no offsetting exposure to iatrogenics1, in a way to incur no or minimal
harm should the solution to the problem be worse than doing nothing

iv- avoids nonlucrative or noncareerenhancing solutions

v- does not take professional, reputational or financial risks for his opinion

vi- in assessments of small probability, tends to produce a number rather than a lower
bound

vii- tries to make his audience confuse "absence of evidence" for "evidence of absence" with
small probability events.

Definition A.2 (Skeptic/Empiricist).
The skeptical empiricist is traditionally (contrary to casual descriptions) someone who puts
a high burden on empirical data and focuses on the nonevidentiary unknown, the exact
opposite to the naive empiricist.

Remark A.1 (Charlatan vs Skeptic).
A charlatan is the exact opposite of the skeptic or skeptical empiricist.

Remark A.2 (Iatrogenics).
Our definition of charlatan isn’t about what he knows, but the ratio of iatrogenics in the
consequences of his actions.

1 Iatrogenics is harm caused by the healer
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what’s a charlatan in risk and probability?

The GMO Problem For instance we can spot a difficulty by the insistence by
some "scientists" on the introduction of genetically modified "golden rice" with
added vitamins as a complicated solution to some nutritional deficiency to "solve
the problem" when simpler solutions (with less potential side effects) are on hand
are available.

The charlatan can be highly credentialed (with publications in Econometrica) or
merely one of those risk management consultants. A mathematician may never
be a charlatan when doing math, but becomes one automatically when proposing
models with potential iatrogenics and imposing them uncritically to reality. We
will see how charlatans operate by implicit collusion using citation rings.

Citation Rings and Cosmetic Job Market Science

Subdiscipline of Bullshittology I
am being polite here. I truly believe
that a scary share of current discus-
sions of risk management and prob-
ability by nonrisktakers fall into the
category called obscurantist, partak-
ing of the "bullshitology" discussed
in Elster: "There is a less polite word
for obscurantism: bullshit. Within
Anglo-American philosophy there is
in fact a minor sub-discipline that
one might call bullshittology." [29].
The problem is that, because of
nonlinearities with risk, minor bull-
shit can lead to catastrophic conse-
quences, just imagine a bullshitter pi-
loting a plane. My angle is that the
bullshit-cleaner in the risk domain is
skin-in-the-game, which eliminates
those with poor understanding of
risk.

Citation rings are how charlatans can
operate as a group. All members in
citations rings are not necessarily char-
latans, but group charlatans need cita-
tion rings.

How I came about citation rings? At
a certain university a fellow was being
evaluated for tenure. Having no means
to gauge his impact on the profession
and the quality of his research, they
checked how many "top publications"
he had. Now, pray, what does consti-
tute a "top publication"? It turned out
that the ranking is exclusively based
on the citations the journal gets. So
people can form of group according
to the Latin expression asinus asimum
fricat (donkeys rubbing donkeys), cite
each other, and call themselves a disci-
pline of triangularly vetted experts.

Detecting a "clique" in network the-
ory is how terrorist cells and groups
tend to be identified by the agencies.

Now what if the fellow got citations
on his own? The administrators didn’t
know how to handle it.

Looking into the system revealed
quite a bit of arbitrage-style abuse by
operators.

Definition A.3 (Higher order self-refer-
ential system).
Ai references Aj 6=i, Aj references Az 6=j, · · ·, Az references Ai.

Definition A.4 (Academic Citation Ring).
A legal higher-order self-referential collection of operators who more or less "anonymously"
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a.1 charlatan

Science (A)

Practice (B) Math (C)

C ⋂ A' ⋂ B'

Figure A.1: The Triffat Fallacy, or
the way academic decision theory
and mathematical statistics view de-
cision, probability, and risk.

peer-review and cite each other, directly, triangularly, or in a network manner, constituting
a clique in a larger network, thus creating so-called academic impact ("highly cited") for
themselves or their journals.

Citation rings become illegal when operators use fake identities; they are otherwise legal
no matter how circular the system.

The mark of such system is engagement in incremental science in a given direc-
tion, calling each other’s results "innovative". Example of dangerous citation ring:
Markowitz mean-variance, GARCH, Value-At-Risk and more general risk manage-
ment, some traditions of behavioral economics.

Definition A.5 (Job Market Science).
A paper that follows recipes and tricks to attain higher ranking in a certain community. It
seems a "contribution" but it is explained by connection to other parts which are triangu-
larly self-referential ; it is otherwise substance-free.

Take GARCH methods (Rob Engle [35]): we know that, in practice, GARCH is
totally useless to predict volatility; it is an academic PR machine. And, analytically,
it is unsound under the structure of fat tails in the markets, as we will see in
Chapter 3 and section 8.11 But the "Nobel" plus an active citation ring deems it a
"successful" theory.

It is clear that, with rare exceptions articles published Econometrica are either
substance-free or pure distortion (use of variance as measure of variability).

How do we break away from substance-free statistical science? Skin in the game,
of course, reestablishes contact with reality, with details in Chapter 14 . The central
idea is that survival matters in risk, people not truly exposed to harm can continue
operating permanently.

The Triffat Fallacy

An illustration of our nighmare for risk management –and an explanation of why
we can’t accept current methods in economics for anything to do with the real
world – is as follows. From Antifragile[111]:
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what’s a charlatan in risk and probability?

Modern members of the discipline of decision theory, alas, travel a one- way
road from theory to practice. They characteristically gravitate to the most com-
plicated but most inapplicable problems, calling the process "doing science."

There is an anecdote about one Professor Triffat (I am changing the name be-
cause the story might be apocryphal, though from what I have witnessed, it is
very characteristic). He is one of the highly cited academics of the field of deci-
sion theory, wrote the main textbook and helped develop something grand and
useless called "rational decision making," loaded with grand and useless axioms
and shmaxioms, grand and even more useless probabilities and shmobabilities.
Triffat, then at Columbia University, was agonizing over the decision to accept
an appointment at Harvard –many people who talk about risk can spend their
lives without encountering more difficult risk taking than this type of decision.
A colleague suggested he use some of his Very Highly Respected and Grandly
Honored and Decorated academic techniques with something like "maximum
expected utility," as, he told him, "you always write about this." Triffat angrily
responded, "Come on, this is serious!"

Definition A.6 (The Triffat Fallacy).
Consists in confusing the problem and the inverse problem, going from theory to practice,
at the intersection C ∩ A′ ∩ B′ according to definitions in A.1.

There has been a lot of trivial commentary, a recurring critique of theoretical risk
management, (with the person feeling that he has just discovered it): things are "too
mathematical", "mathematics does not work in the real world", or lists of what does
or does not constitute "mathematical charlatanry".2 But little or nothing seems to
be done to figure out where math works and is needed; where standard methods as-
cribed to science, whether evidentiary (statistics) or analytical (mathematics/logic)
do not apply in Risk management and decision making under opacity –since one
doesn’t have the whole story– except as constraints.

2 It has been fashionable to invoke the vague idea of mathematical "charlatanry" in the history of eco-
nomics, first with Alfred Marshall famous procedure "(1) Use mathematics as shorthand language,
rather than as an engine of inquiry. (2) Keep to them till you have done. (3) Translate into English.
(4) Then illustrate by examples that are important in real life (5) Burn the mathematics. (6) If you can’t
succeed in 4, burn 3. This I do often.". Similarly, J.M. Keynes: "(...)we will endeavour to discredit the
mathematical charlatanry by which, for a hundred years past, the basis of theoretical statistics have been
greatly undermined", in A Treatise On Probability [64]. As one can see, these types of warnings proved
ineffectual owing to citation rings. So our tack is different, largely constrained by the idea of skin in the
game that would bring things to the missing link of reality.
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a.1 charlatan

Pseudo-Rigor and Lack of skin in the game

The disease of pseudo-rigor in the application of probability to real life by peo-
ple who are not harmed by their mistakes can be illustrated as follows, with a
very sad case study. One of the most "cited" document in risk and quantitative
methods is about "coherent measures of risk", which set strong rules on how
to compute tail risk measures, such as the "value at risk" and other methods.
Initially circulating in 1997, the measures of tail risk −while coherent− have
proven to be underestimating risk at least 500 million times (sic). We have had
a few blowups since, including Long Term Capital Management fiasco −and
we had a few blowups before, but departments of mathematical probability
were not informed of them. As we are writing these lines, it was announced
that J.-P. Morgan made a loss that should have happened every ten billion years.
The firms employing these "risk minds" behind the "seminal" paper blew up
and ended up bailed out by the taxpayers. But we now now about a "coherent
measure of risk". This would be the equivalent of risk managing an airplane
flight by spending resources making sure the pilot uses proper grammar when
communicating with the flight attendants, in order to "prevent incoherence".
Clearly the problem, just as similar fancy "science" under the cover of the
discipline of Extreme Value Theory is that tail events are very opaque compu-
tationally, and that such misplaced precision leads to confusion.a

a The "seminal" paper: Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999), Coherent measures
of risk. [4]
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Part II

FAT TA I L S : T H E L L N U N D E R R E A L W O R L D
E C O LO G I E S





3 FAT TA I L S A N D T H E P R O B L E M O F
I N D U C T I O N

Chapter Summary 3: Introducing mathematical formulations of fat tails.
Shows how the problem of induction gets worse. Empirical risk estimator.
Introduces different heuristics to "fatten" tails. Where do the tails start?
Sampling error and convex payoffs.

3.1 the problem of (enumerative) induction
Turkey and Inverse Turkey (from the Glossary in Antifragile): The turkey is fed
by the butcher for a thousand days, and every day the turkey pronounces with
increased statistical confidence that the butcher "will never hurt it"−until Thanks-
giving, which brings a Black Swan revision of belief for the turkey. Indeed not a
good day to be a turkey. The inverse turkey error is the mirror confusion, not seeing
opportunities− pronouncing that one has evidence that someone digging for gold
or searching for cures will "never find" anything because he didn’t find anything in
the past.

What we have just formulated is the philosophical problem of induction (more
precisely of enumerative induction.) To this version of Bertrand Russel’s chicken
we add: mathematical difficulties, fat tails, and sucker problems.

3.2 empirical risk estimators
Let us define an empirical risk estimator that we will work with throughout the
book. We start with a partial first moment.

Definition 3.1.
(Estimator) Let X be, as of time T, a standard sequence of n+1 observations, X =

(
xt0+i∆t

)
0≤i≤n

(with xt ∈ R, i ∈ N), as the discretely monitored history of a stochastic process Xt over
the closed interval [t0, T] (with realizations at fixed interval ∆t thus T = t0 + n∆t). 1

The empirical estimator MX
T (A, f ) is defined as

MX
T (A, f ) ≡ ∑n

i=0 1A f
(
xt0+i∆t

)
∑n

i=0 1D′
(3.1)

1 It is not necessary that ∆t follows strictly calendar time for high frequency observations, as calendar
time does not necessarily correspond to transaction time or economic time, so by a procedure used in
option trading called "transactional time" or "economic time", the observation frequency might need to
be rescaled in a certain fashion to increase sampling at some windows over others − a procedure not
dissimilar to seasonal adjustment, though more rigorous mathematically. What matters is that, if there
is scaling of ∆t, the scaling function needs to be fixed and deterministic. But this problem is mostly
present in high frequency. The author thanks Robert Frey for the discussion.
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fat tails and the problem of induction

In sample
out of 

sample

T

t
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X

Figure 3.1: A rolling window: to estimate the errors of an estimator,it is not rigorous to
compute in-sample properties of estimators, but compare properties obtained at T with
prediction in a window outside of it. Maximum likelihood estimators should have their
variance (or other more real-world metric of dispersion) estimated outside the window.

where 1A D → {0, 1} is an indicator function taking values 1 if xt ∈ A and 0 oth-
erwise, ( D′ subdomain of domain D: A ⊆ D′ ⊂ D ) , and f is a function of x.
For instance f (x) = 1, f (x) = x, and f (x) = xN correspond to the probability , the
first moment, and Nth moment, respectively. A is the subset of the support of
the distribution that is of concern for the estimation. Typically, ∑n

i=0 1D = n, the
counting measure.

Let us stay in dimension 1 for now not to muddle things. Standard Estimators
tend to be variations about MX

t (A, f ) where f(x) =x and A is defined as the domain
of the distribution of X, standard measures from x, such as moments of order z, etc.,
are calculated "as of period" T. Such measures might be useful for the knowledge of
some properties, but remain insufficient for decision making as the decision-maker
may be concerned for risk management purposes with the left tail (for distributions
that are not entirely skewed, such as purely loss functions such as damage from
earthquakes, terrorism, etc.), or any arbitrarily defined part of the distribution.

Standard Risk Estimators

Definition 3.2.
(Shortfall Empirical Estimator) The empirical risk estimator S for the unconditional shortfall
S below K is defined as, with A = (−∞, K), f (x) = x

S ≡ ∑n
i=0 x 1A

∑n
i=0 1D′

(3.2)
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3.2 empirical risk estimators

An alternative method is to compute the conditional shortfall:

S′ ≡ E[M|X < K] =
∑n

i=0 x1A
∑n

i=0 1A
(3.3)

One of the uses of the indicator function 1A, for observations falling into a sub-
section* A of the distribution, is that we can actually derive the past actuarial value
of an option with X as an underlying struck as K as MX

T (A, x), with A = (−∞, K]
for a put and A = [K, ∞) for a call, with f (x) = x− K or K− x.

Criterion 3.1.
The measure M is considered to be an estimator over interval [ t- N ∆t, T] if and only
if it holds in expectation over a specific period XT+i∆t for a given i>0, that is across
counterfactuals of the process, with a threshold ε (a tolerated relative absolute divergence;
removing the absolute sign reveals the bias) so

ξ(MX
T (Az, f )) =

E
∣∣MX

T (Az, f )−MX
>T (Az, f )

∣∣∣∣MX
T (Az, f )

∣∣ < ε (3.4)

when MX
T (Az, f ) is computed; but while working with the opposite problem, that

is, trying to guess the spread in the realizations of a stochastic process, when the
process is known, but not the realizations, we will use MX

>T (Az, 1) as a divisor.
In other words, the estimator as of some future time, should have some stability

around the "true" value of the variable and stay below an upper bound on the
tolerated bias.

We use the loss function ξ(.) = |.| measuring mean absolute deviations to ac-
commodate functions and exposures and that do not have finite second mo-
ment, even if the process has such moments. Another reason is that in the real
world gains and losses are in straight numerical deviations.a

a Using absolute deviations would sound more robust than squared deviations, particularly for
fat-tailed domains; it seems that the resistance comes, among other things, from the absence of
derivability at 0.

So we skip the notion of "variance" for an estimator and rely on absolute mean
deviation so ξ can be the absolute value for the tolerated bias. And note that we
use mean deviation as the equivalent of a "loss function"; except that with matters
related to risk, the loss function is embedded in the subset A of the estimator.

This criterion makes our risk estimator compatible with standard sampling the-
ory. Actually, it is at the core of statistics. Let us rephrase:

Standard statistical theory doesn’t allow claims on estimators made in a given
set unless these are made on the basis that they can "generalize", that is, reproduce
out of sample, into the part of the series that has not taken place (or not seen), i.e.,
for time series, for τ >t.

This should also apply in full force to the risk estimator. In fact we need more,
much more vigilance with risks.

For convenience, we are taking some liberties with the notations, pending on con-
text: MX

T (A, f ) is held to be the estimator, or a conditional summation on data but
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fat tails and the problem of induction

for convenience, given that such estimator is sometimes called "empirical expecta-
tion", we will be also using the same symbol, namely with MX

>T(A, f ) for the textit
estimated variable for period > T (to the right of T, as we will see, adapted to the
filtration T). This will be done in cases M is the M-derived expectation operator E

or EP under real world probability measure P (taken here as a counting measure),
that is, given a probability space (Ω, F , P), and a continuously increasing filtra-
tion Ft, Fs ⊂ Ft if s < t. the expectation operator (and other Lebesque measures)
are adapted to the filtration FT in the sense that the future is progressive and one
takes a decision at a certain period T + ∆t from information at period T, with an
incompressible lag that we write as ∆t −in the "real world", we will see in Chapter
x there are more than one laging periods ∆t, as one may need a lag to make a deci-
sion, and another for execution, so we necessarily need > ∆t. The central idea of a
cadlag process is that in the presence of discontinuities in an otherwise continuous
stochastic process (or treated as continuous), we consider the right side, that is the
first observation, and not the last.

3.3 fat tails, the finite moment case

Some harmless formalism: Lp space. Let’s look at payoff in functional space,
to work with the space of functions having a certain integrability. Let Y be
a measurable space with Lebesgue measure µ. The space Lpof f measurable
functions on Y is defined as:

Lp(µ) =
{

f :
(∫

Y
| f p|dµ

)1/p
< ∞

}
with p ≥ 1. The application of concern for our analysis in this section is where
the measure µ is a counting measure (on a countable set).

Fat tails are not about the incidence of low probability events, but the contribu-
tions of events away from the "center" of the distribution to the total properties.2

As a useful heuristic, consider the ratio h

h =

√
E (X2)

E(|X|)

where E is the expectation operator (under the probability measure of concern and
x is a centered variable such E(x) = 0); the ratio increases with the fat tailedness of

the distribution; (The general case corresponds to (MX
T (A,xn))

1
n

MX
T (A,|x|) , n > 1, under the

condition that the distribution has finite moments up to n, and the special case here
n=2).

2 The word "infinite" moment is a big ambiguous, it is better to present the problem as "undefined"
moment in the sense that it depends on the sample, and does not replicate outside. Say, for a two-tailed
distribution, the designation"infinite" variance might apply for the fourth moment, but not to the third.
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3.3 fat tails, the finite moment case

x
2

 x¤

x

f(x)

Figure 3.2: The difference between the two weighting functions increases for large values of
x.

Simply, xnis a weighting operator that assigns a weight, xn−1 large for large
values of x, and small for smaller values.

The effect is due to the convexity differential between both functions, |x| is piece-
wise linear and loses the convexity effect except for a zone around the origin.3

Proof: By Jensen’s inequality under the counting measure.
As a convention here, we write Lp for space, Lp for the norm in that space.
Let X ≡ (xi)

n
i=1, The Lp Norm is defined (for our purpose) as, with p ∈ N ,

p ≥ 1):

‖X‖p≡
(

∑n
i=1|xi|p

n

)1/p

The idea of dividing by n is to transform the norms into expectations,i.e., mo-
ments. For the Euclidian norm, p = 2.

The norm rises with higher values of p, as, with a > 0.4,

(
1
n

n

∑
i=1
|xi|p+a

)1/(p+a)

>

(
1
n

n

∑
i=1
|xi|p

)1/p

3 TK Adding an appendix "Quick and Robust Estimates of Fatness of Tails When Higher Moments Don’t
Exist" showing how the ratios STD/MAD (finite second moment) and MAD(MAD)/STD (finite first
moment) provide robust estimates and outperform the Hill estimator for symmetric power laws.

4 An application of Hölder’s inequality,(
∑n

i=1 |xi |p+a) 1
a+p ≥

(
n

1
a+p−

1
p ∑n

i=1 |xi |p
)1/p

.
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fat tails and the problem of induction

What is critical for our exercise and the study of the effects of fat tails is that,
for a given norm, dispersion of results increases values. For example, take a flat
distribution, X= {1, 1}. ‖X‖1 =‖X‖2 =... =‖X‖n = 1. Perturbating while preserving

‖X‖1 , X =
{

1
2 , 3

2

}
produces rising higher norms:

{‖X‖n }5
n=1 =

{
1,

√
5

2
,

3
√

7
22/3

,
4
√

41
2

,
5
√

61
24/5

}
. (3.5)

Trying again, with a wider spread, we get even higher values of the norms, X ={
1
4 , 7

4

}
,

{||X||n}5
n=1 =

1,
5
4

,
3
√

43
2

2
,

4
√

1201
4

,
5
√

2101
2× 23/5

 . (3.6)

So we can see it becomes rapidly explosive.

One property quite useful with power laws with infinite moment:

‖X‖∞ = sup
(

1
n
|xi|
)n

i=1
(3.7)

Gaussian Case For a Gaussian, where x ∼ N(0, σ), as we assume the mean is 0
without loss of generality,

MX
T
(

A, XN)1/N

MX
T (A, |X|)

=
π

N−1
2N

(
2

N
2 −1 ((−1)N + 1

)
Γ
(

N+1
2

)) 1
N

√
2

or, alternatively

MX
T
(

A, XN)
MX

T (A, |X|)
= 2

1
2 (N−3)

(
1 + (−1)N

)( 1
σ2

) 1
2−

N
2

Γ
(

N + 1
2

)
(3.8)

where Γ(z) is the Euler gamma function; Γ(z) =
∫ ∞

0 tz−1e−tdt. For odd moments,
the ratio is 0. For even moments:

MX
T
(

A, X2)
MX

T (A, |X|)
=
√

π

2
σ

hence √
MX

T (A, X2)

MX
T (A, |X|)

=
Standard Deviation

Mean Absolute Deviation
=
√

π

2

For a Gaussian the ratio ∼ 1.25, and it rises from there with fat tails.
Example: Take an extremely fat tailed distribution with n=106, observations are

all -1 except for a single one of 106,

X =
{
−1,−1, ...,−1, 106

}
.
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3.4 a simple heuristic to create mildly fat tails

Time

1.1
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STD�MAD

Figure 3.3: The Ratio Standard Devi-
ation/Mean Deviation for the daily
returns of the SP500 over the past 47

years, with a monthly window.

The mean absolute deviation, MAD (X) = 2. The standard deviation STD (X)=1000.
The ratio standard deviation over mean deviation is 500.

As to the fourth moment, it equals 3
√

π
2 σ3 .

For a power law distribution with tail exponent α=3, say a Student T√
MX

T (A, X2)

MX
T (A, |X|)

=
Standard Deviation

Mean Absolute Deviation
=

π

2

We will return to other metrics and definitions of fat tails with power law dis-
tributions when the moments are said to be "infinite", that is, do not exist. Our
heuristic of using the ratio of moments to mean deviation works only in sample,
not outside.

"Infinite" moments Infinite moments, say infinite variance, always manifest them-
selves as computable numbers in observed sample, yielding an estimator M, simply
because the sample is finite. A distribution, say, Cauchy, with infinite means will
always deliver a measurable mean in finite samples; but different samples will de-
liver completely different means. Figures 3.4 and 3.5 illustrate the "drifting" effect
of M a with increasing information.

3.4 a simple heuristic to create mildly fat tails
Since higher moments increase under fat tails, as compared to lower ones, it should
be possible so simply increase fat tails without increasing lower moments.

Note that the literature sometimes separates "Fat tails" from "Heavy tails", the
first term being reserved for power laws, the second to subexponential distribution
(on which, later). Fughtetaboutdit. We simply call "Fat Tails" something with a
higher kurtosis than the Gaussian, even when kurtosis is not defined. The defini-
tion is functional as used by practioners of fat tails, that is, option traders and lends
itself to the operation of "fattening the tails", as we will see in this section.

A Variance-preserving heuristic. Keep E
(
X2) constant and increase E

(
X4), by

"stochasticizing" the variance of the distribution, since <X4> is itself analog to the
variance of <X2> measured across samples ( E

(
X4) is the noncentral equivalent of
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fat tails and the problem of induction

What is a "Tail Event"?

There seems to be a confusion about the definition of a "tail event", as it has
different meanings in different disciplines. The three are only vaguely related.
1) In statistics: an event of low probability.
2) Here: an event of low probability but worth discussing, hence has to have
some large consequence.
3) In measure and probability theory: Let (Xi)n

i=1 be a n sequence of realiza-
tions (that is, roughly speaking a random variables–function of "event"). The
tail sigma algebra of the sequence is T =

⋂∞
n=1 σ(Xn+1, Xn+2, . . .) and an event

∈ T is a tail event. So here it means a specific event extending infinitely into
the future, or mathematically speaking the limiting behavior of sequence of
random variables.

So when we discuss the Borel-Cantelli lemma or the zero-one law that the
probability of a tail event happening infinitely often is 1 or0, it is the latter that
is meant.
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Figure 3.4: The mean of a series
with Infinite mean (Cauchy).
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Figure 3.5: The standard deviation
of a series with infinite variance
(St(2)).
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3.5 the body, the shoulders, and the tails

The Black Swan Problem: As we saw, it is not merely that events in the tails
of the distributions matter, happen, play a large role, etc. The point is that
these events play the major role and their probabilities are not computable, not
reliable for any effective use. The implication is that Black Swans do not neces-
sarily come from fat tails; le problem can result from an incomplete assessment
of tail events.

E
((

X2 −E
(
X2))2

)
). Chapter x will do the "stochasticizing" in a more involved

way.

An effective heuristic to get some intuition about the effect of the fattening
of tails consists in simulating a random variable set to be at mean 0, but with
the following variance-preserving tail fattening trick: the random variable follows

a distribution N
(
0, σ
√

1− a
)

with probability p = 1
2 and N

(
0, σ
√

1 + a
)

with the

remaining probability 1
2 , with 0 6 a < 1.

The characteristic function is

φ(t, a) =
1
2

e−
1
2 (1+a)t2σ2

(
1 + eat2σ2

)
Odd moments are nil. The second moment is preserved since

M(2) = (−i)2∂t,2φ(t)|0 = σ2

and the fourth moment

M(4) = (−i)4∂t,4φ|0= 3
(

a2 + 1
)

σ4

which puts the traditional kurtosis at 3
(
a2 + 1

)
. This means we can get an "implied

a from kurtosis. The value of a is roughly the mean deviation of the stochastic
volatility parameter "volatility of volatility" or Vvol in a more fully parametrized
form.

This heuristic, while useful for intuition building, is of limited powers as it can
only raise kurtosis to twice that of a Gaussian, so it should be limited to getting
some intuition about its effects. Section 3.6 will present a more involved technique.

As Figure 3.6 shows: fat tails are about higher peaks, a concentration of obser-
vations around the center of the distribution.

3.5 the body, the shoulders, and the tails

We assume tails start at the level of convexity of the segment of the probability
distribution to the scale of the distribution.
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fat tails and the problem of induction

The Crossovers and Tunnel Effect.

Notice in Figure 3.6 a series of crossover zones, invariant to a. Distributions called
"bell shape" have a convex-concave-convex shape (or quasi-concave shape).

a4

a

a3a2a1

“Shoulders”
Ha1, a2L,

Ha3, a4L

“Peak”

(a2, a3L

Right tail

Left tail

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.6: Fatter and Fatter Tails through perturbation of σ. The mixed distribution with
values for the stochastic volatility coefficient a: {0, 1

4 , 1
2 , 3

4}. We can see crossovers a1 through
a4. The "tails" proper start at a4 on the right and a1on the left.

Let X be a random variable, the distribution of which p(x) is from a general
class of all unimodal one-parameter continous pdfs pσ with support D ⊆ R and
scale parameter σ. Let p(.) be quasi-concave on the domain, but neither convex
nor concave. The density function p(x) satisfies: p(x) ≥ p(x + ε) for all ε > 0, and
x > x∗ and p(x) ≥ p(x− ε) for all x < x∗ with {x∗ : p(x∗) = maxx p(x)}. The class
of quasiconcave functions is defined as follows: for all x and y in the domain and
ω ∈ [0, 1],

p (ω x + (1−ω) y) ≥ min (p(x), p(y))

A- If the variable is "two-tailed", that is, D= (-∞,∞), where pδ(x) ≡ p(x,σ+δ)+p(x,σ−δ)
2

1. There exist a "high peak" inner tunnel, AT= ( a2, a3) for which the δ-perturbed
σ of the probability distribution pδ(x)≥p(x) if x ∈ ( a2, a3)

2. There exists outer tunnels, the "tails", for which pδ(x)≥p(x) if x ∈ (−∞, a1) or
x ∈ (a4, ∞)

3. There exist intermediate tunnels, the "shoulders", where pδ(x)≤ p(x) if x ∈
(a1, a2 ) or x ∈ (a3, a4 )

A={ai} is the set of solutions
{

x : ∂2 p(x)
∂σ 2 |a= 0

}
.
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3.5 the body, the shoulders, and the tails

In Summary, Where Does the Tail Start?

For a general class of symmetric distributions with power laws, the tail starts at:

±
√

5α+
√

(α+1)(17α+1)+1
α−1 s
√

2
, with α infinite in the stochastic volatility Gaussian case and

s the standard deviation. The "tail" is located between around 2 and 3 standard
deviations. This flows from our definition: which part of the distribution is
convex to errors in the estimation of the scale.
But in practice, because historical measurements of STD will be biased lower
because of small sample effects (as we repeat fat tails accentuate small sample
effects), the deviations will be > 2-3 STDs.

For the Gaussian (µ, σ), the solutions obtained by setting the second derivative with
respect to σ to 0 are:

e−
(x−µ)2

2σ2
(
2σ4 − 5σ2(x− µ)2 + (x− µ)4)

√
2πσ7

= 0,

which produces the following crossovers:

(3.9)
{a1, a2, a3, a4} =

{
µ −

√
1
2

(
5 +
√

17
)

σ, µ −
√

1
2

(
5−
√

17
)

σ,

µ +

√
1
2

(
5−
√

17
)

σ, µ +

√
1
2

(
5 +
√

17
)

σ

}

In figure 3.6, the crossovers for the intervals are numerically {−2.13σ,−.66σ, .66σ, 2.13σ}.
As to a symmetric power law(as we will see further down), the Student T Distri-

bution with scale s and tail exponent α:

p(x) ≡

(
α

α+ x2
s2

) α+1
2

√
αsB

(
α
2 , 1

2

)

{a1, a2, a3, a4} =

{
−

√
5α−
√

(α+1)(17α+1)+1
α−1 s
√

2
,

√
5α−
√

(α+1)(17α+1)+1
α−1 s
√

2
,

−

√
5α+
√

(α+1)(17α+1)+1
α−1 s
√

2
,

√
5α+
√

(α+1)(17α+1)+1
α−1 s
√

2

}

[EXPLAIN B[] is BETA HERE OR IN A TABLE OF SYMBOLS]
When the Student is "cubic", that is, α = 3:
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fat tails and the problem of induction

{a1, a2, a3, a4} = {
−
√

4−
√

13s,−
√

4 +
√

13s,
√

4−
√

13s,
√

4 +
√

13s
}

We can verify that when α → ∞, the crossovers become those of a Gaussian. For
instance, for a1:

lim
α→∞

−

√
5α−
√

(α+1)(17α+1)+1
α−1 s
√

2
= −

√
1
2

(
5−
√

17
)

s

B- For some one-tailed distribution that have a "bell shape" of convex-concave-
convex shape, under some conditions, the same 4 crossover points hold. The Log-
normal is a special case.

{a1, a2, a3, a4} =
{

e
1
2

(
2µ−
√

2
√

5σ2−
√

17σ2
)

,

e
1
2

(
2µ−
√

2
√√

17σ2+5σ2
)

, e
1
2

(
2µ+
√

2
√

5σ2−
√

17σ2
)

, e
1
2

(
2µ+
√

2
√√

17σ2+5σ2
)}

3.6 fattening of tails with skewed variance

We can improve on the fat-tail heuristic in 3.4, (which limited the kurtosis to twice
the Gaussian) as follows. We Switch between Gaussians with variance:{

σ2(1 + a), with probability p
σ2(1 + b), with probability 1− p

with p ∈ [0,1), both a, b ∈ (-1,1) and b= −a p
1−p , giving a characteristic function:

φ(t, a) = p e−
1
2 (a+1)σ2t2 − (p− 1) e−

σ2t2(ap+p−1)
2(p−1)

with Kurtosis
3((1−a2)p−1)

p−1 thus allowing polarized states and high kurtosis, all

variance preserving, conditioned on, when a > (<) 0, a < (>) 1−p
p .

Thus with p = 1/1000, and the maximum possible a = 999, kurtosis can reach
as high a level as 3000.

This heuristic approximates quite well the effect on probabilities of a lognormal
weighting for the characteristic function

φ(t, V) =
∫ ∞

0

e−
t2v
2 −

(
log(v)−v0+ Vv2

2

)2

2Vv2

√
2πvVv

dv
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3.6 fattening of tails with skewed variance
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Figure 3.7: Stochastic Variance: Gamma distribution and Lognormal of same mean and
variance.

where v is the variance and Vv is the second order variance, often called volatility
of volatility. Thanks to integration by parts we can use the Fourier transform to
obtain all varieties of payoffs (see Gatheral, 2006). But the absence of a closed-form
distribution can be remedied as follows.

Gamma Variance A shortcut for a full lognormal distribution without the narrow
scope of heuristic is to use Gamma Variance. Assume that the variance of the
Gaussian follows a gamma distribution.

Γα(v) =
vα−1

(
V
α

)−α
e−

αv
V

Γ(α)

with mean V and standard deviation V2

α . Figure 3.7 shows the matching to a lognor-
mal with same first two moments as we get the lognormal with mean and standard

deviation, respectively,
{

1
2 log

(
αV3

αV+1

)
and

√
− log

(
αV

αV+1

)
. The final distribution

becomes (once again, assuming, without loss, a mean of 0):

fα,V(x) =
∫ ∞

0

e−
x2
2v

√
2π
√

v
Γα(v)dv

allora:

fα,V(x) =

2
3
4−

α
2

(
V
α

)−α (
α
V
) 1

4−
α
2
(

1
x2

) 1
4−

α
2 K 1

2−α

(√
2
√

α
V√

1
x2

)
√

πΓ(α)
(3.10)

Chapter x will show how tail events have large errors.
Why do we use Student T to simulate symmetric power laws? For convenience,

only for convenience. It is not that we believe that the generating process is Student
T. Simply, the center of the distribution does not matter much for the properties
involved in certain classes of decision making. The lower the exponent, the less
the center plays a role. The higher the exponent, the more the student T resembles
the Gaussian, and the more justified its use will be accordingly. More advanced
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-4 -2 0 2 4

Gaussian With Gamma Variance

Figure 3.8: Stochastic Variance using Gamma distribution by perturbating α in equation 3.10.

methods involving the use of Levy laws may help in the event of asymmetry, but
the use of two different Pareto distributions with two different exponents, one for
the left tail and the other for the right one would do the job (without unnecessary
complications).

Why power laws? There are a lot of theories on why things should be power
laws, as sort of exceptions to the way things work probabilistically. But it seems
that the opposite idea is never presented: power should can be the norm, and the
Gaussian a special case as we will see in Chapt x, of concave-convex responses (sort
of dampening of fragility and antifragility, bringing robustness, hence thinning
tails).

3.7 fat tails in higher dimension
⇀
X = (X1, X2, . . . , Xm) the vector of random variables. Consider the joint probability
distribution f (x1, . . . , xm) . We denote the m-variate multivariate Normal distribu-
tion by N(0, Σ), with mean vector

⇀
µ , variance-covariance matrix Σ, and joint pdf,

f
(
⇀
x
)

= (2π)−m/2|Σ|−1/2exp
(
−1

2

(
⇀
x −⇀

µ
)T

Σ−1
(
⇀
x −⇀

µ
))

(3.11)

where
⇀
x = (x1, . . . , xm) ∈ Rm, and Σ is a symmetric, positive definite (m × m)

matrix.
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3.8 scalable and nonscalable, a deeper view of fat tails
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Figure 3.9: Multidimensional Fat Tails: For a 3 dimentional vector, thin tails (left) and fat
tails (right) of the same variance. Instead of a bell curve with higher peak (the "tunnel") we
see an increased density of points towards the center.

We can apply the same simplied variance preserving heuristic as in 3.4 to fatten
the tails:

fa

(
⇀
x
)

=
1
2

(2π)−m/2|Σ1|−1/2exp
(
−1

2

(
⇀
x −⇀

µ
)T

Σ1
−1
(
⇀
x −⇀

µ
))

+
1
2

(2π)−m/2|Σ2|−1/2exp
(
−1

2

(
⇀
x −⇀

µ
)T

Σ2
−1
(
⇀
x −⇀

µ
))

(3.12)

Where a is a scalar that determines the intensity of stochastic volatility, Σ1 =
Σ(1 + a) and Σ2 = Σ(1− a).5

As we can see in Figure ??, as with the one-dimensional case, we see concentra-
tion in the middle part of the distribution.

3.8 scalable and nonscalable, a deeper view of fat
tails

So far for the discussion on fat tails we stayed in the finite moments case. For a
certain class of distributions, those with finite moments, PX>nK

PX>K
depends on n and

K. For a scale-free distribution, with K "in the tails", that is, large enough, PX>nK
PX>K

depends on n not K. These latter distributions lack in characteristic scale and will
end up having a Paretan tail, i.e., for x large enough, PX>x = Cx−α where α is the
tail and C is a scaling constant.

5 We can simplify by assuming as we did in the single dimension case, without any loss of generality, that
⇀
µ = (0, . . . , 0).
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Figure 3.10: Three Types of Distributions. As we hit the tails, the Student remains scalable
while the Standard Lognormal shows an intermediate position before eventually ending up
getting an infinite slope on a log-log plot.

Note: We can see from the scaling difference between the Student and the Pareto
the conventional definition of a power law tailed distribution is expressed more
formally as P(X > x) = L(x)x−α where L(x) is a "slow varying function", which
satisfies the following:

lim
x→∞

L(t x)
L(x)

= 1

for all constants t > 0.
For x large enough, logP>x

logx converges to a constant, namely the tail exponent
-α. A scalable should produce the slope α in the tails on a log-log plot, as x → ∞.
Compare to the Gaussian (with STD σ and mean µ) , by taking the PDF this time

instead of the exceedance probability log
(

f (x)
)

= (x−µ)2

2σ2 − log(σ
√

2π) ≈ − 1
2σ2 x2

which goes to −∞ faster than − log(x) for ±x → ∞.
So far this gives us the intuition of the difference between classes of distributions.

Only scalable have "true" fat tails, as others turn into a Gaussian under summation.
And the tail exponent is asymptotic; we may never get there and what we may see
is an intermediate version of it. The figure above drew from Platonic off-the-shelf
distributions; in reality processes are vastly more messy, with switches between
exponents.

Estimation issues Note that there are many methods to estimate the tail exponent
α from data, what is called a "calibration. However, we will see, the tail exponent
is rather hard to guess, and its calibration marred with errors, owing to the in-
sufficiency of data in the tails. In general, the data will show thinner tail than it
should.

80



3.9 subexponential as a class of fat tailed distributions

k P(X > k)−1 P(X>k)
P(X>2 k) P(X > k)−1 P(X>k)

P(X>2 k) P(X > k)−1 P(X>k)
P(X>2 k)

(Gaussian) (Gaussian) Student(3) Student (3) Pareto(2) Pareto (2)

2 44 720 14.4 4.9 8 4

4 31600. 5.1× 1010
71.4 6.8 64 4

6 1.01× 109 5.5× 1023
216 7.4 216 4

8 1.61× 1015 9× 1041
491 7.6 512 4

10 1.31× 1023 9× 1065
940 7.7 1000 4

12 5.63× 1032 fuhgetaboudit 1610 7.8 1730 4

14 1.28× 1044 fuhgetaboudit 2530 7.8 2740 4

16 1.57× 1057 fuhgetaboudit 3770 7.9 4100 4

18 1.03× 1072 fuhgetaboudit 5350 7.9 5830 4

20 3.63× 1088 fuhgetaboudit 7320 7.9 8000 4

Table 7: Scalability, comparing slowly varying functions to other distributions

We will return to the issue in Chapter 10.

3.9 subexponential as a class of fat tailed distri-
butions

We introduced the category "true fat tails" as scalable power laws to differenciate it
from the weaker one of fat tails as having higher kurtosis than a Gaussian.

Some use as a cut point infinite variance, but Chapter 3 will show it to be not
useful, even misleading. Many finance researchers (Officer, 1972) and many private
communications with finance artists reveal some kind of mental block in seeing the
world polarized into finite/infinite variance.

Another useful distinction: Let X = ( xi)1≤i≤n be realizations of i.i.d. random vari-
ables in R+, with cumulative distribution function F; then by the Teugels (1975)[113]
and Pitman [89] (1980) definition:

lim
x→∞

1− F2(x)
1− F(x)

= 2

where F2 is the convolution of x with itself. ÏĂ
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fat tails and the problem of induction

Note that X does not have to be limited to R+; we can split the variables in
positive and negative domain for the analysis.

Example 1 Let f 2(x) be the density of a once-convolved one-tailed Pareto distri-
bution (that is two-summed variables) scaled at a minimum value of 1 with tail
exponent α, where the density of the non-convolved distribution

f (x) = α x−α−1,

x ≥ 1,
which yields a closed-form density:

f 2(x) = 2α2x−2α−1
(

B x−1
x

(−α, 1− α)− B 1
x
(−α, 1− α)

)
where Bz(a, b) is the Incomplete Beta function, Bz(a, b) ≡

∫ z
0 ta−1 (1− t)b−1 dt

{∫ ∞
K f 2(x, α) dx∫ ∞
K f (x, α) dx

}
α =1,2 =

 2(K + log(K − 1))
K

,
2
(

K(K(K+3)−6)
K−1 + 6 log(K − 1)

)
K2


and, for α = 5,

1
2(K− 1)4K5

K(K(K(K(K(K(K(K(4K + 9) + 24) + 84) + 504)− 5250) + 10920)− 8820) + 2520) + 2520(K − 1)4 log(K − 1)

We know that the limit is 2 for all three cases, but it is important to observe the
preasymptotics

As we can see in fig x, finite or nonfinite variance is of small importance for the
effect in the tails.

Example 2 Case of the Gaussian. Since the Gaussian belongs to the family of the
stable distribution (Chapter x), the convolution will produce a Gaussian of twice
the variance. So taking a Gaussian, N (0, 1) for short (0 mean and unitary standard

deviation), the densities of the convolution will be Gaussian
(

0,
√

2
)

, the ratio of
the exceedances ∫ ∞

K f 2(x) dx∫ ∞
K f (x) dx

=
erfc

(
K
2

)
erfc

(
K√

2

)
will rapidly explode.
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3.9 subexponential as a class of fat tailed distributions
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Figure 3.11: The ratio of the exceedance probabilities of a sum of two variables over a single
one: power law
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Figure 3.12: The ratio of the exceedance probabilities of a sum of two variables over a single
one: Gaussian

Application: Two Real World Situations We are randomly selecting two people,
and the sum of their heights is 4.1 meters. What is the most likely combination?
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Figure 3.13: The ratio of
the exceedance probabili-
ties of a sum of two vari-
ables over a single one:
Case of the Lognormal
which in that respect be-
haves like a power law

We are randomly selecting two people, and the sum of their assets, the total wealth
is $30 million. What is the most likely breakdown?

Assume two variables X1 and X2 following an identical distribution, where f is
the density function,

P [X1 + X2 = s] = f 2(s)

=
∫

f (y) f (s − y) dy.

The probability densities of joint events, with 0 ≤ β < s
2 :

= P
(

X1 =
s
2

+ β
)
× P

(
X2 =

s
2
− β

)
Let us work with the joint distribution for a given sum:

For a Gaussian, the product becomes

f
( s

2
+ β
)

f
( s

2
− β

)
=

e−β2− s2

n2

2π

For a Power law, say a Pareto distribution with α tail exponent, f (x)= α x−α−1xα
minwhere

xmin is minimum value , s
2 ≥ xmin , and β ≥ s

2−xmin

f
(

β +
s
2

)
f
(

β − s
2

)
= α2x2α

min

((
β − s

2

) (
β +

s
2

))−α−1

The product of two densities decreases with β for the Gaussian6, and increases
with the power law. For the Gaussian the maximal probability is obtained β = 0.
For the power law, the larger the value of β, the better.

So the most likely combination is exactly 2.05 meters in the first example, and
xminand $30 million −xmin in the second.

6 Technical comment: we illustrate some of the problems with continuous probability as follows. The sets
4.1 and 30 106 have Lebesgue measures 0, so we work with densities and comparing densities implies
Borel subsets of the space, that is, intervals (open or closed) ± a point. When we say "net worth is
approximately 30 million", the lack of precision in the statement is offset by an equivalent one for the
combinations of summands.
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3.9 subexponential as a class of fat tailed distributions

More General Approach to Subexponentiality

More generally, distributions are called subexponential when the exceedance prob-
ability declines more slowly in the tails than the exponential.

For a one-tailed random variable7,

a) limx→∞
PX>Σx
PX>x

= n, (Christyakov, 1964, [19]), which is equivalent to

b) limx→∞
PX>Σx

P(X>max(x)) = 1, (Embrecht and Goldie, 1980,[33] ).

The sum is of the same order as the maximum (positive) value, another way of
saying that the tails play a large role.

Clearly F has to have no exponential moment:∫ ∞

0
eεx dF(x) = ∞

for all ε > 0.

We can visualize the convergence of the integral at higher values of m: Figures
3.14 and 3.15 illustrate the effect of emx f (x), that is, the product of the exponential
moment m and the density of a continuous distributions f (x) for large values of x.

7 for two-tailed variables, the result should be the same by splitting the observations in two groups around
a center. BUT I NEED TO CHECK IF TRUE
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Figure 3.14: Multiplying the standard Gaussian density by emx, for m = {0, 1, 2, 3}.
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Figure 3.15: Multiplying the Lognormal (0,1) density by emx, for m = {0, 1, 2, 3}.

The standard Lognormal belongs to the subexponential category, but just barely
so (we used in the graph above Log Normal-2 as a designator for a distribution
with the tail exceedance ∼ Ke−β(log(x)−µ)γ

where γ=2)
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3.10 joint fat-tailedness and elliptical distributions
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Figure 3.16: A time series of an extremely fat-tailed distribution (one-tailed). Given a long
enough series, the contribution from the largest observation should represent the entire sum,
dwarfing the rest.

3.10 joint fat-tailedness and elliptical distribu-
tions

There is another aspect, beyond our earlier definition(s) of fat-tailedness, once we
increase the dimensionality into random vectors:

Definition of an Elliptical Distribution From the definition in [37], X, a p ran-
dom vector is said to have an elliptical (or elliptical contoured) distribution with
parameters µ, Σ and Ψ if its characteristic function is of the form exp(it′µ)Ψ(tΣt′).

The main property of the class of elliptical distribution is that it is closed under
linear transformation. This leads to attractive properties in the building of portfo-
lios, and in the results of portfolio theory (in fact one cannot have portfolio theory
without ellitical distributions).

Note that (ironically) Levy-Stable distributions are elliptical.

Stochastic Parameters The problem of elliptical distributions is that they do not
map the return of securities, owing to the absence of a single variance at any point
in time, see Bouchaud and Chicheportiche (2010) [18]. When the scales of the
distributions of the individuals move but not in tandem, the distribution ceases to
be elliptical.

Figure 3.17 shows the effect of applying the equivalent of stochastic volatility
methods: the more annoying stochastic correlation. Instead of perturbating the
correlation matrix Σ as a unit as in section 3.7, we perturbate the correlations with
surprising effect.
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fat tails and the problem of induction

Figure 3.17: Elliptically Contoured Joint Returns of Powerlaw (Student T)

Figure 3.18: NonElliptical Joint Returns, from stochastic correlations
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3.10 joint fat-tailedness and elliptical distributions

Figure 3.19: Elliptically Contoured Joint Returns for for a multivariate distribution (x, y, z)
solving to the same density.

Figure 3.20: NonElliptical Joint Returns, from stochastic correlations, for a multivariate dis-
tribution (x, y, z) solving to the same density.
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fat tails and the problem of induction

3.11 different approaches for statistical estima-
tors

There are broadly two separate ways to go about estimators: nonparametric and
parametric.

The nonparametric approach It is based on observed raw frequencies derived
from sample-size n. Roughly, it sets a subset of events A and MX

T (A, 1) (i.e., f(x)
=1), so we are dealing with the frequencies ϕ(A) = 1

n ∑n
i=0 1A. Thus these estimates

don’t allow discussions on frequencies ϕ < 1
n , at least not directly. Further the

volatility of the estimator increases with lower frequencies. The error is a function
of the frequency itself (or rather, the smaller of the frequency ϕ and 1-ϕ). So if
∑n

i=0 1A=30 and n = 1000, only 3 out of 100 observations are expected to fall into the
subset A, restricting the claims to too narrow a set of observations for us to be able
to make a claim, even if the total sample n = 1000 is deemed satisfactory for other
purposes. Some people introduce smoothing kernels between the various buckets
corresponding to the various frequencies, but in essence the technique remains
frequency-based. So if we nest subsets, A1 ⊆ A2 ⊆ A, the expected "volatility" (as
we will see later in the chapter, we mean MAD, mean absolute deviation, not STD)
of MX

T (Az, f ) will produce the following inequality:

E
(∣∣MX

T
(

Az, f
)
− MX

>T
(

Az, f
)∣∣)∣∣MX

T
(

Az, f
)∣∣ ≤

E
(∣∣MX

T
(

A<z, f
)
−
∣∣MX

>T
(

A<z, f
)∣∣)∣∣MX

T
(

A<z, f
)∣∣

for all functions f (Proof via twinking of law of large numbers for sum of random
variables).

The parametric approach it allows extrapolation but emprisons the representation
into a specific off-the-shelf probability distribution (which can itself be composed
of more sub-probability distributions); so MX

T is an estimated parameter for use
input into a distribution or model and the freedom left resides in differents values
of the parameters.

Both methods make is difficult to deal with small frequencies. The nonparametric
for obvious reasons of sample insufficiency in the tails, the parametric because
small probabilities are very sensitive to parameter errors.

The Sampling Error for Convex Payoffs

This is the central problem of model error seen in consequences not in probability.
The literature is used to discussing errors on probability which should not matter
much for small probabilities. But it matters for payoffs, as f can depend on x. Let
us see how the problem becomes very bad when we consider f and in the presence
of fat tails. Simply, you are multiplying the error in probability by a large number,
since fat tails imply that the probabilities p(x) do not decline fast enough for large
values of x. Now the literature seem to have examined errors in probability, not
errors in payoff.
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3.11 different approaches for statistical estimators

Let MX
T (Az, f ) be the estimator of a function of x in the subset Az= (δ1 , δ2 )

of the support of the variable. Let ξ(MX
T (Az, f )) be the mean absolute error in the

estimation of the probability in the small subset Az= (δ1 , δ2 ), i.e.,

ξ
(

MX
T (Az, f )

)
≡

E
∣∣MX

T (Az, 1)−MX
>T (Az, 1)

∣∣
MX

T (Az, 1)

Assume f(x) is either linear or convex (but not concave) in the form C+ Λ xβ,
with both Λ > 0 and β ≥ 1. Assume E[X], that is, E

[
MX

>T (AD , f )
]
< ∞, for

Az≡AD , a requirement that is not necessary for finite intervals.
Then the estimation error of MX

T (Az, f ) compounds the error in probability, thus
giving us the lower bound in relation to ξ

E
[∣∣MX

T
(

Az, f
)
− MX

>T
(

Az, f
)∣∣]

MX
T
(

Az, f
)

≥
(
|δ1 − δ2|min (|δ2| , |δ1|) β−1 + min (|δ2| , |δ1|) β

) E
[∣∣MX

T (Az, 1)− MX
>T (Az, 1)

∣∣]
MX

T (Az, 1)

Since
E[MX

>T(Az , f )]
E[MX

>T(Az ,1)]
=
∫ δ2

δ1
f (x)p(x) dx∫ δ2

δ1
p(x) dx

, and expanding f (x), for a given n on both sides.

We can now generalize to the central inequality from convexity of payoff , which
we shorten as Convex Payoff Sampling Error Inequalities, CPSEI:

Rule 3.1.Under our conditions above, if for all λ ∈(0,1) and f {i,j}(x±∆) ∈ Az,
(1−λ) f i(x−∆)+λ f i(x+∆)

f i(x) ≥ (1−λ) f j(x−∆)+λ f j(x+∆)
f j(x)

, ( f iis never less convex than f jin in-
terval Az ), then

ξ
(

MX
T (Az, f i)

)
≥ ξ

(
MX

T (Az, f j)
)

Rule 3.2.Let ni be the number of observations required for MX
>T
(

Azi , f i) the estima-

tor under f i to get an equivalent expected mean absolute deviation as MX
>T

(
Azj , f j

)
under f j with observation size nj, that is, for ξ

(
MX

T,ni

(
Azi , f i)

)
= ξ
(

MX
T,nj

(Azj , f j)
)

,
then

ni ≥ nj

This inequality becomes strict in the case of nonfinite first moment for the under-
lying distribution.

The proofs are obvious for distributions with finite second moment, using the
speed of convergence of the sum of random variables expressed in mean deviations.
We will not get to them until Chapter x on convergence and limit theorems but an
example will follow in a few lines.

We will discuss the point further in Chapter x, in the presentation of the confla-
tion problem.

For a sketch of the proof, just consider that the convex transformation of a prob-
ability distribution p(x) produces a new distribution f (x) ≡ Λxβ with density

p f (x) =
Λ−1/βx

1−β
β p

(
( x

Λ )
1/β
)

β over its own adjusted domain, for which we find an
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fat tails and the problem of induction

increase in volatility, which requires a larger n to compensate, in order to maintain
the same quality for the estimator.

Example For a Gaussian distribution, the variance of the transformation becomes:

V
(

Λxβ
)

=
2β−2Λ2σ2β

π

(
2
√

π
(

(−1)2β + 1
)

Γ
(

β +
1
2

)
−
(

(−1)β + 1
)2

Γ
(

β + 1
2

)2
)

and to adjust the scale to be homogeneous degree 1, the variance of

V
(

xβ
)

=
2β−2σ2β

π

(
2
√

π
(

(−1)2β + 1
)

Γ
(

β +
1
2

)
−
(

(−1)β + 1
)2

Γ
(

β + 1
2

)2
)

For Λ=1, we get an idea of the increase in variance from convex transformations:

β Variance V(β) Kurtosis

1 σ2 3
2 2 σ4 15
3 15 σ6 231

5

4 96 σ8 207
5 945 σ10 46189

63

6 10170 σ12 38787711
12769

Since the standard deviation drops at the rate
√

n for non powerlaws, the number
of n(β), that is, the number of observations needed to incur the same error on the

sample in standard deviation space will be
√

V(β)√
n1

=
√

V(1)√
n , hence n1 = 2 n σ2. But

to equalize the errors in mean deviation space, since Kurtosis is higher than that of
a Gaussian, we need to translate back into L1 space, which is elementary in most
cases.

For a Pareto Distribution with support v[xβ
min, ∞),

V
(

Λ xβ
)

=
αΛ2x2

min
(α− 2)(α− 1)2 .

Log characteristic functions allows us to deal with the difference in sums and
extract the speed of convergence.

Example illustrating the Convex Payoff Inequality Let us compare the "true" the-
oretical value to random samples drawn from the Student T with 3 degrees of
freedom, for MX

T
(

A, xβ
)
, A = (−∞,−3], n=200, across m simulations

(
> 105) by

estimating E
∣∣MX

T
(

A, xβ
)
−MX

>T
(

A, xβ
)
/MX

T
(

A, xβ
)∣∣ using

ξ =
1
m

m

∑
j=1

∣∣∣∣∣∣
n

∑
i=1

1A

(
xj

i

)
β

1A
− MX

>T

(
A, xβ

)
/

n

∑
i=1

1A

(
xj

i

)
β

1A

∣∣∣∣∣∣ .

It produces the following table showing an explosive relative error ξ. We compare
the effect to a Gausian with matching standard deviation, namely

√
3. The relative

error becomes infinite as β approaches the tail exponent. We can see the difference
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3.12 econometrics imagines functions in L2 space

between the Gaussian and the power law of finite second moment: both "sort of"
resemble each others in many applications − but... not really.

β ξSt(3) ξG(0,
√

3)

1 0.17 0.05

3
2 0.32 0.08

2 0.62 0.11

5
2 1.62 0.13

3 ” f uhgetaboudit” 0.18

Warning. Severe mistake (common in the economics literature) One should
never make a decision involving MX

T (A>z, f ) and basing it on calculations
for MX

T (Az, 1), especially when f is convex, as it violates CPSEI. Yet many
papers make such a mistake. And as we saw under fat tails the problem is
vastly more severe.

Utility Theory Note that under a concave utility of negative states, decisions re-
quire a larger sample. By CPSEI the magnification of errors require larger number
of observation. This is typically missed in the decision-science literature. But there
is worse, as we see next.

Tail payoffs The author is disputing, in Taleb (2013), the results of a paper, Ilmanen
(2013), on why tail probabilities are overvalued by the market: naively Ilmanen
(2013) took the observed probabilities of large deviations, f (x) = 1 then made an
inference for f (x) an option payoff based on x, which can be extremely explosive (a
error that can cause losses of several orders of magnitude the initial gain). Chapter x
revisits the problem in the context of nonlinear transformations of random variables.
The error on the estimator can be in the form of parameter mistake that inputs into
the assumed probability distribution, say σ the standard deviation (Chapter x and
discussion of metaprobability), or in the frequency estimation. Note now that if
δ1→-∞, we may have an infinite error on MX

T (Az, f ), the left-tail shortfall while, by
definition, the error on probability is necessarily bounded.

If you assume in addition that the distribution p(x) is expected to have fat tails
(of any of the kinds seen in 3.83.9, then the problem becomes more acute.

Now the mistake of estimating the properties of x, then making a decisions for
a nonlinear function of it, f (x), not realizing that the errors for f (x) are different
from those of x is extremely common. Naively, one needs a lot larger sample for
f (x) when f (x) is convex than when f (x) = x. We will re-examine it along with the
"conflation problem" in Chapter x.
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fat tails and the problem of induction

The Black Swan was understood by :
100% of Firemen
99.9% of skin-in-the-game risk-takers and businesspersons
85% of common readers
80% of hard scientists (except some complexity artists)
65% of psychologists (except Harvard psychologists)
60% of traders
25% of U.K. journalists
15% of money managers who manage money of others
1.5% of "Risk professionals"
1% of U.S. journalists
and
0% of economists (or perhaps, to be fair, .5%)
If is frequent that economists like Andrew Lo and Mueller [69] or Nicholas Bar-
beris [7] play straw man by treating it as "popular" (to delegitimize is intellec-
tual content) while both misunderstanding (and misrepresenting) its message
and falling for the very errors it warns against, as in the confusion between
binary and vanilla exposures.a

a Lo and Mueler: "... "black swans" (Taleb, 2007). These cultural icons refer to disasters that occur so
infrequently that they are virtually impossible to analyze using standard statistical inference. How-
ever, we find this perspective less than helpful because it suggests a state of hopeless ignorance in
which we resign ourselves to being buffeted and battered by the unknowable." Had they read The
Black Swan they would have found the message is the exact opposite of "blissful ignorance".

3.12 econometrics imagines functions in L2 space

There is something Wrong With Econometrics, as Almost All Papers Don’ t Repli-
cate. Two reliability tests in Chapter x, one about parametric methods the other
about robust statistics, show that there is something rotten in econometric methods,
fundamentally wrong, and that the methods are not dependable enough to be of
use in anything remotely related to risky decisions. Practitioners keep spinning
inconsistent ad hoc statements to explain failures.

We will show how, with economic variables one single observation in 10,000, that
is, one single day in 40 years, can explain the bulk of the "kurtosis", a measure of
"fat tails", that is, both a measure how much the distribution under consideration
departs from the standard Gaussian, or the role of remote events in determining
the total properties. For the U.S. stock market, a single day, the crash of 1987, de-
termined 80% of the kurtosis for the period between 1952 and 2008. The same
problem is found with interest and exchange rates, commodities, and other vari-
ables. Redoing the study at different periods with different variables shows a total
instability to the kurtosis. The problem is not just that the data had "fat tails", some-
thing people knew but sort of wanted to forget; it was that we would never be able
to determine "how fat" the tails were within standard methods. Never.

The implication is that those tools used in economics that are based on squar-
ing variables (more technically, the L2 norm), such as standard deviation, variance,
correlation, regression, the kind of stuff you find in textbooks, are not valid scien-
tifically(except in some rare cases where the variable is bounded). The so-called "p
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3.13 typical manifestations of the turkey surprise

values" you find in studies have no meaning with economic and financial variables.
Even the more sophisticated techniques of stochastic calculus used in mathematical
finance do not work in economics except in selected pockets.

Figure 3.21: The Turkey Problem: This is the shortest explanation of the link between
evidentiary and nonprecautionary risk management and the problem of induction. Looking
for the name of the author for credit/premission.

3.13 typical manifestations of the turkey surprise
Two critical (and lethal) mistakes, entailing mistaking inclusion in a class Di for D<i
because of induced slowness in the convergence under the law of large numbers.
We will see that in the hierarchy, scale (or variance) is swamped by tail deviations.

Great Moderation (Bernanke, 2006) consists in mistaking a two-tailed process
with fat tails for a process with thin tails and low volatility.

Long Peace (Pinker, 2011) consists in mistaking a one-tailed process with fat tails
for a process with thin tails and low volatility and low mean.

Some background on Bernanke’s severe mistake. When I finished writing The
Black Swan, in 2006, I was confronted with ideas of "great moderation" stemming
from the drop in volatility in financial markets. People involved in promulgating
such theories did not realize that the process was getting fatter and fatter tails
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Figure 3.22: The Turkey Problem,
where nothing in the past properties
seems to indicate the possibility of
the jump.

Figure 3.23: History moves by
jumps: A fat tailed historical pro-
cess, in which events are distributed
according to a power law that corre-
sponds to the "80/20", with α ' 1.2,
the equivalent of a 3-D Brownian
motion.
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3.13 typical manifestations of the turkey surprise

Figure 3.24: What the proponents of
"great moderation" or "long peace"
have in mind: history as a thin-tailed
process.
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fat tails and the problem of induction

Figure 3.25: High Water Mark in Palais de la Cité in Paris. The Latin poet Lucretius, who
did not attend business school, wrote that we consider the biggest objeect of any kind that
we have seen in our lives as the largest possible item: et omnia de genere omni / Maxima quae
vivit quisque, haec ingentia fingit. The high water mark has been fooling humans for millennia:
ancient Egyptians recorded the past maxima of the Nile, not thinking that the worst could
be exceeded. The problem has recently affected the UK. floods with the "it never happened
before" argument. Credit Tony Veitch
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3.14 metrics for functions outside L2 space

(from operational and financial, leverage, complexity, interdependence, etc.), mean-
ing fewer but deeper departures from the mean. The fact that nuclear bombs explode
less often that regular shells does not make them safer. Needless to say that with
the arrival of the events of 2008, I did not have to explain myself too much. Never-
theless people in economics are still using the methods that led to the "great mod-
eration" narrative, and Bernanke, the protagonist of the theory, had his mandate
renewed.

When I contacted social scientists I discovered that the familiarity with fat tails
was pitifully small, highly inconsistent, and confused.

The Long Peace Mistake . Later, to my horror, I saw an identical theory of great
moderation produced by Steven Pinker with the same naive statistically derived
discussions (>700 pages of them!). Except that it applied to security. The problem
is that, unlike Bernanke, Pinker realized the process had fat tails, but did not realize
the resulting errors in inference.

Chapter x will get into the details and what we can learn from it.

3.14 metrics for functions outside L2 space

We can see from the data in Chapter 3 that the predictability of the Gaussian-style
cumulants is low, the mean deviation of mean deviation is ∼70% of the mean
deviation of the standard deviation (in sample, but the effect is much worse in
practice); working with squares is not a good estimator. Many have the illusion that
we need variance: we don’t, even in finance and economics (especially in finance
and economics).

We propose different cumulants, that should exist whenever the mean exists. So
we are not in the dark when we refuse standard deviation. It is just that these
cumulants require more computer involvement and do not lend themselves easily
to existing Platonic distributions. And, unlike in the conventional Brownian Motion
universe, they don’t scale neatly.

Note finally that these measures are central since, to assess the quality of the
estimation MX

T , we are concerned with the expected mean error of the empirical ex-
pectation, here E

(∣∣MX
T (Az, f )−MX

>T (Az, f )
∣∣) , where z corresponds to the support

of the distribution.

C0 ≡
∑T

i=1 xi

T

(This is the simple case of 1A = 1D ; an alternative would be:

C0 ≡ 1
∑T

i=1 1A
∑T

i=1 xi1A or C0 ≡ 1
∑T

i=1 D
∑T

i=1 xi1A,

depending on whether the function of concern for the fragility metric requires con-
ditioning or not). The first cumulant,

C1 ≡
1

T − 1

T

∑
i=1
|xi − C0|

99



fat tails and the problem of induction

produces the Mean Deviation (but centered by the mean, the first moment). The
second cumulant,

C2 ≡
1

T − 2

T

∑
i=1
| |x i − Co |−C1 |

produces the mean deviation of the mean deviation. And . . .

CN ≡
1

T − N

T

∑
i=1
|...| | |x i − Co |−C1 |−C2 |... − CN−1 | .

Note the practical importance of C1 : under some conditions usually met, it
measures the quality of the estimation E

[∣∣MX
T (Az , f ) − MX

>T (Az , f )
∣∣], since

MX
>T (Az , f ) = C0 . When discussing fragility, we will use a "tail cumulant", that is

absolute deviations for 1 A covering a spccific tail.

Table ?? shows the theoretical first two cumulants for two symmetric distribu-
tions: a Gaussian, N (0,σ) and a symmetric Student T St(0, s , α) with mean 0, a
scale parameter s, the PDF for x is

p(x ) =

(
α

α+( x
s )

2

) α+1
2

√
α s B

(
α
2 , 1

2

) .

As to the PDF of the Pareto distribution, p(x ) = αsα x−α−1 for x ≥ s (and the
mean will be necessarily positive).

These cumulants will be useful in areas for which we do not have a good grasp
of convergence of the sum of observations.

3.15 using the hilbert transform

In the cases where |X | is hard to compute by integration, particularly with Lévy
Stable distributions that do not allow no explicit densities, we can make use of the
Hilbert Transform to extract the expected mean deviations.

H ( f ) = F −1 (− i sgn( ·) · F ( f )) ,

where
[H ( f )](x ) def= p.v.

1
π

∫ ∞

−∞

f (t)
x − t

dx .

p.v. means principal value in the Cauchy sense, so

p.v.
∫ ∞

−∞
= lim

a→∞
lim
b→0

∫ −b

−a
+
∫ a

b
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3.16 a comment on bayesian methods in risk management

Figure 3.26: Terra Incognita: Brad Efron’s positioning of the unknown that is certainly out
of reach for any type of knowledge, which includes Bayesian inference.(Efron, via Susan
Holmes)

3.16 a comment on bayesian methods in risk man-
agement

[This section will be developed further; how the statemennt "but this is my prior"
can be nonsense with risk management if such a prior is not solid. ]

Brad Efron (2013)[28]:

Sorry. My own practice is to use Bayesian analysis in the presence of
genuine prior information; to use empirical Bayes methods in the paral-
lel cases situation; and otherwise to be cautious when invoking uninfor-
mative priors. In the last case, Bayesian calculations cannot be uncriti-
cally accepted and should be checked by other methods, which usually
means frequentistically.

Diaconis and Friedman [24] show the difficulty for an agent to formulate a prior.

Further Reading

Pitman [89], Embrechts and Goldie (1982)[32]Embrechts (1979 Doctoral thesis?)[33],
Chistyakov (1964) [19], Goldie (1978)[52], Pitman[89], Teugels [113], and, more gen-
eral, [34].
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B S P E C I A L C A S E S O F FAT TA I L S
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Figure B.1: The coffee cup is less likely to incur "small" than large harm; it is exposed to
(almost) everything or nothing.

For monomodal distributions, fat tails are the norm: one can look at tens of
thousands of time series of the socio-economic variables without encountering
a single episode of "platykurtic" distributions. But for multimodal distribu-
tions, some surprises can occur.

b.1 multimodality and fat tails, or the war and
peace model

We noted in 1.x that stochasticizing, ever so mildly, variances, the distribution gains
in fat tailedness (as expressed by kurtosis). But we maintained the same mean.

But should we stochasticize the mean as well, and separate the potential out-
comes wide enough, so that we get many modes, the "kurtosis" (as measured by the
fourth moment) would drop. And if we associate different variances with different
means, we get a variety of "regimes", each with its set of probabilities.
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special cases of fat tails

S1

S2

Pr

Figure B.2: The War and peace
model. Kurtosis K=1.7, much lower
than the Gaussian.

Either the very meaning of "fat tails" loses its significance under multimodal-
ity, or takes on a new one where the "middle", around the expectation ceases to
matter.[6, 72].

Now, there are plenty of situations in real life in which we are confronted to
many possible regimes, or states. Assuming finite moments for all states, s1 a calm
regime, with expected mean m1and standard deviation σ1 , s2 a violent regime,
with expected mean m2and standard deviation σ2 , and more. Each state has its
probability p i .

Assume, to simplify a one-period model, as if one was standing in front of
a discrete slice of history, looking forward at outcomes. (Adding complications
(transition matrices between different regimes) doesn’t change the main result.)

The Characteristic Function φ(t) for the mixed distribution becomes:

φ(t) =
N

∑
i=1

p i e−
1
2 t2 σ2

i + i tm i

For N = 2, the moments simplify to the following:

M1 = p1 m1 + (1 − p1 ) m2

M2 = p1

(
m2

1 + σ2
1

)
+ (1 − p1 )

(
m2

2 + σ2
2

)
M3 = p1 m3

1 + (1 − p1 ) m2

(
m2

2 + 3σ2
2

)
+ 3m1 p1 σ2

1

M4 = p1

(
6m2

1 σ2
1 + m4

1 + 3σ4
1

)
+
(

1 − p1
) (

6m2
2 σ2

2 + m4
2 + 3σ4

2

)
Let us consider the different varieties, all characterized by the condition p1 <

(1 − p1 ), m1 < m2 , preferably m1 < 0 and m2 > 0, and, at the core, the central
property: σ1 > σ2 .

Variety 1: War and Peace. Calm period with positive mean and very low volatility,
turmoil with negative mean and extremely low volatility.
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b.2 transition probabilites: what can break will break

S2

S1

Pr

Figure B.3: The Bond payoff model.
Absence of volatility, deterministic
payoff in regime 2, mayhem in
regime 1. Here the kurtosis K=2.5.
Note that the coffee cup is a special
case of both regimes 1 and 2 being
degenerate.

Variety 2: Conditional deterministic state Take a bond B, paying interest r at
the end of a single period. At termination, there is a high probability of getting
B(1 + r ), a possibility of defaut. Getting exactly Bis very unlikely. Think that there
are no intermediary steps between war and peace: these are separable and discrete
states. Bonds don’t just default "a little bit". Note the divergence, the probability
of the realization being at or close to the mean is about nil. Typically, p(E(x )) the
probabilitity densities of the expectation are smaller than at the different means of
regimes, so P(x = E(x )) < P (x = m1 ) and < P (x = m2 ), but in the extreme case
(bonds), P(x = E(x )) becomes increasingly small. The tail event is the realization
around the mean.

In option payoffs, this bimodality has the effect of raising the value of at-the-
money options and lowering that of the out-of-the-money ones, causing the exact
opposite of the so-called "volatility smile".

Note the coffee cup has no state between broken and healthy. And the state of
being broken can be considered to be an absorbing state (using Markov chains for
transition probabilities), since broken cups do not end up fixing themselves.

Nor are coffee cups likely to be "slightly broken", as we see in figure B.1.

A brief list of other situations where bimodality is encountered:

1. Mergers

2. Professional choices and outcomes

3. Conflicts: interpersonal, general, martial, any situation in which there is no
intermediary between harmonious relations and hostility.

4. Conditional cascades

b.2 transition probabilites: what can break will
break

So far we looked at a single period model, which is the realistic way since new
information may change the bimodality going into the future: we have clarity over
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special cases of fat tails

one-step but not more. But let us go through an exercise that will give us an idea
about fragility. Assuming the structure of the model stays the same, we can look at
the longer term behavior under transition of states. Let P be the matrix of transition
probabilitites, where p i , j is the transition from state i to state j over ∆t, (that is,
where S(t) is the regime prevailing over period t, P

(
S(t + ∆t) = s j

∣∣ S(t) = s j
))

P =

(
p1,1 p2,1

p1,2 p2,2

)

After n periods, that is, n steps,

Pn =

(
an bn

cn dn

)
Where

an =
( p1,1 − 1) ( p1,1 + p2,2 − 1) n + p2,2 − 1

p1,1 + p2,2 − 2

bn =
(1 − p1,1 ) (( p1,1 + p2,2 − 1) n − 1)

p1,1 + p2,2 − 2

cn =
(1 − p2,2 ) (( p1,1 + p2,2 − 1) n − 1)

p1,1 + p2,2 − 2

dn =
( p2,2 − 1) ( p1,1 + p2,2 − 1) n + p1,1 − 1

p1,1 + p2,2 − 2

The extreme case to consider is the one with the absorbing state, where p1,1 = 1,
hence (replacing p i , 6= i | i=1,2 = 1 − p i , i).

Pn =

(
1 0

1 − p N
2,2 p N

2,2

)
and the "ergodic" probabilities:

lim
n→∞

Pn =

(
1 0
1 0

)

The implication is that the absorbing state regime 1 S(1) will end up dominating
with probability 1: what can break and is irreversible will eventually break.

With the "ergodic" matrix,

lim
n→∞

Pn = π .1T

where 1T is the transpose of unitary vector {1,1}, π the matrix of eigenvectors.
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b.2 transition probabilites: what can break will break

The eigenvalues become λ =

(
1

p1,1 + p2,2 − 1

)
and associated eigenvectors

π=

(
1 1

1− p1,1
1− p2,2

1

)
.
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C Q U I C K A N D R O B U S T M E A S U R E
O F FAT TA I L S

c.1 introduction
We propose a new measure of fatness of tails. We also propose a quick heuris-
tic to extract the tail exponent α and get distributions for a symmetric power law
distributed variable. It is based on using whatever moments are believed to be
reasonably finite, and replaces kurtosis which in financial data has proved to be un-
bearingly unstable ([109], [? ]). The technique also remedies some of the instability
of the Hill estimator, along with its natural tradoff between how much data one
must discard in otder to retain in the tails that is relevant to draw the slope. Our
estimators use the entire data available. This paper covers two situations:

1. Mild fat tails: a symmetric distribution with finite second moment, α > 2
, preferably in the neighborhood of 3. (Above 4 the measure of kurtosis be-
comes applicable again).

2. Extremely fat tails: a symmetric distribution with finite first moment, 1 <
α < 3.

Let x be a r.v. on the real line. Let x be distributed according to a Student T
distribution.

p(x ) =

(
α

α+ (x−µ)2

σ2

) α+1
2

√
α σ B

(
α
2 , 1

2

) (C.1)

We assume that µ = 0 for data in high enough frequency as the mean will not
have an effect on the estimation tail exponent.

c.2 first metric, the simple estimator
Assume finite variance and the tail exponent α > 2.

Define the ratio Ξ(α) as
√

E(x2)
E(|x|) .

Ξ(α) =

√√√√√√∫ ∞
−∞

x2

 α

α+ x2
σ2

 α+1
2

√
αB( α

2 , 1
2 )

dx

∫ ∞
−∞

|x|

 α

α+ x2
σ2

 α+1
2

√
α B( α

2 , 1
2 )

dx

=

√
π
√

α
α−2 Γ

(
α
2
)

√
α Γ
(

α−1
2

) (C.2)

109



quick and robust measure of fat tails

0 2 4 6 8

Hill10

0 2 4 6 8

X
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Figure C.1: Full Distribution of the estimators for α = 3
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Cumulant Ratio

0 1 2 3 4 5 6

Hill20

0 2 3 4 5 6

Hill100

Figure C.2: Full Distribution of the estimators for α = 7/4

The tail from the observations: Consider a random sample of size n, (Xi)1≤i≤n.
Get a sample metric

Where STD and MAD are the sample standard and mean absolute deviations.

m =
STD
MAD
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c.3 second metric, the Ξ2 estimator

for the sample (these measures do not necessarily need to be central). The estima-
tion of m using maximum likelihood methods [FILL]

The recovered tail αΞ.

αΞ = Ξ−1(m) = {α : Ξ(α) = m}

which is computed numerically.

The Hm corresponds to the measure of the m largest deviation in the right tails=
(a negative value for m means it is the left tail). We rank X(1) ≥ X(2) ≥ ... ≥ X(m) ≥
... ≥ X(n). The Hill estimator

Hm =

∑m
i=1 log

(
Xi

Xm+1

)
m

−1

Table 8: Simulation for true α = 3, N = 1000

Method Estimate STD Error

H10 3.09681 1.06873

H20 2.82439 0.639901

H50 2.4879 0.334652

H100 2.14297 0.196846

α∗Ξ 3.26668 0.422277

c.3 second metric, the Ξ2 estimator

Ξ2(α) =
E(|x− E|x||)

E(|x|)

Ξ2(α) =
(

(α− 1)B
(

α

2
,

1
2

))α−1
((

(α− 1)2B
(

α

2
,

1
2

)2

+ 4

) 1−α
2

−

2−α(α− 1) 2F1

(
α
2 , α+1

2 ; α+2
2 ;− 1

4 (α− 1)2B
(

α
2 , 1

2

)2
)

α

+
2 2F1

(
1
2 , α+1

2 ; 3
2 ;− 4

(α−1)2 B( α
2 , 1

2 )
2

)
(α− 1)B

(
α
2 , 1

2

)2

)
+

1
2

(C.3)

m
′

=
1
n

∑n
i=1 |Xi −MAD|

MAD

Table 9: Simulation for true α = 7/4, N = 1000
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quick and robust measure of fat tails

Method Estimate STD Error

H10 1.92504 0.677026

H20 1.80589 0.423783

H50 1.68919 0.237579

H100 1.56134 0.149595

α∗Ξ2
1.8231 0.243436
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4 H I E R A R C H Y O F D I S T R I B U T I O N S
F O R A S Y M M E T R I E S

Chapter Summary 4: Using the asymptotic Radon-Nikodym derivatives of
probability measures, we construct a formal methodology to avoid the "mas-
querade problem" namely that standard "empirical" tests are not empirical at
all and can be fooled by fat tails, though not by thin tails, as a fat tailed dis-
tribution (which requires a lot more data) can masquerade as a low-risk one,
but not the reverse. Remarkably this point is the statistical version of the
logical asymmetry between evidence of absence and absence of evidence. We
put some refinement around the notion of "failure to reject", as it may mis-
apply in some situations. We show how such tests as Kolmogorov Smirnoff,
Anderson-Darling, Jarque-Bera, Mardia Kurtosis, and others can be gamed
and how our ranking rectifies the problem.

4.1 permissible empirical statements
One can make statements of the type "This is not Gaussian", or "this is not Pois-
son"(many people don’t realize that Poisson distributions are generally thin tailed
owing to finite moments); but one cannot rule out a Cauchy tail or other similar
power laws. So this chapter puts some mathematical structure around the idea
of which "empirical" statements are permissible in acceptance and rejection and
which ones are not. (One can violate these statements but not from data analysis,
only basing oneself on a priori statement of what belongins to some probability
distributions.)12

Let us get deeper into the masquerade problem, as it concerns the problem of
induction and fat-tailed environments, and get to the next step. Simply, if a mech-
anism is fat tailed it can deliver large values; therefore the incidence of large de-
viations is possible, but how possible, how often these occur should occur, will be
hard to know with any precision beforehand. This is similar to the standard water
puddle problem: plenty of ice cubes could have generated it. As someone who goes
from reality to possible explanatory models, I face a completely different spate of
problems from those who do the opposite.

We said that fat tailed series can, in short episodes, masquerade as thin-tailed. At
the worst, we don’t know how long it would take to know for sure what is going

1 Classical statistical theory is based on rejection and failure to reject, which is inadequade as one can
reject fat tails, for instance, which is not admissible here. Likewise this framework allows us to formally
"accept" some statements.

2 This chapter was motivated by the findings in an article by Clauset, Aaron, Cosma Rohilla Shalizi,
and Mark EJ Newman. "Power-law distributions in empirical data." SIAM review 51.4 (2009): 661-703,
deeming that wealth data "cannot plausibly be considered to follow a power law". The methodology they
used is based on a class of "naive" power law fitting methods than ignore the properties of out-of-sample
parts.
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hierarchy of distributions for asymmetries

on. But we can have a pretty clear idea whether organically, because of the nature
of the payoff, the "Black Swan" can hit on the left (losses) or on the right (profits).
This point can be used in climatic analysis. Things that have worked for a long time
are preferable−they are more likely to have reached their ergodic states.

This chapter aims here at building a rigorous methodology for attaining statistical
(and more general) knowledge by rejection, and cataloguing rejections, not addition.
We can reject some class of statements concerning the fat-tailedness of the payoff,
not others.

4.2 masquerade example

Figure 4.1: N=1000. Sample simulation. Both series have the exact same means and variances
at the level of the generating process. Naive use of common metrics leads to the acceptance
that the process A has thin tails.

Figure 4.2: N=1000. Rejection: Another realization. there is 1/2 chance of seeing the real
properties of A. We can now reject the hypothesis that the smoother process has thin tails.

We construct the cases as switching between Gaussians with variances{
σ2 (a + 1)
σ2 (b + 1)

with probability p
with probability (1 − p)

with p ∈ [0,1); a, b ∈ (-1,1) and (to conserve the variance) b= −a p
1− p , which

produces a Kurtosis κ =
3((1−a2 ) p−1)

p−1 thus allowing polarized states and high

kurtosis, with a condition that for a > (<) 0, a < (>) 1− p
p . Let us compare the two

cases:
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4.3 the probabilistic version of absense of evidence

A) A switching process producing Kurtosis= 107 (using p= 1/2000, a sligtly below
the upper bound a= 1− p

p −1) to

B) The regular situation p = 0, a=1, the case of kurtosis κ = 3.

The two graphs in figures 4.1 and 4.2 show the realizations of the processes A (to
repeat, produced with the switching process) and B, entirely Gaussian, both of the
same variance.

4.3 the probabilistic version of absense of evi-
dence

Our concern is exposing some errors in probabilistic statements and statistical in-
ference, in making inferences symmetric, when they are more likely to be false on
one side than the other, or more harmful one side than another. Believe it or not,
this pervades the entire literature.

Many have the illusion that "because Kolmogorov-Smirnoff is nonparametric”, it
is therefore immune to the nature specific distribution under the test (perhaps from
an accurate sentence in Feller (1971), vol 2 as we will see further down). The belief
in Kolmogorov-Smirnoff is also built in the illusion that our concern is probability
rather than expected payoff, or the associated problem of "confusing a binary for
a vanilla”, where by attribute substitution, one tests a certain variable in place of
another, simpler one.

In other words, it is a severe mistake to treat epistemological inequalities as
equalities. No matter what we do, we end up going back to the problem of in-
duction, except that the world still exists and people unburdened with too many
theories are still around. By making one-sided statements, or decisions, we have
been immune to the muddle in statistical inference.

Remark 4.1 (Via negativa and the problem of induction).
Test statistics are effective (and robust) at rejecting, but not at accepting, as a single large
deviation allowed the rejection with extremely satisfactory margins (a near-infinitesimal P-
Value). This illustrates the central epistemological difference between absence of evidence
and evidence of absence.3

4.4 via negativa and one-sided arbitrage of sta-
tistical methods

Via negativa In theology and philosophy, corresponds to the focus on what some-
thing is not, an indirect definition. In action, it is a recipe for what to avoid, what
not to do− subtraction, not addition, say, in medicine. In epistemology: what to
not accept, or accept as false. So a certain body of knowledge actually grows by
rejection. ( Antifragile[111], Glossary).

3 ab esse ad posse valet consequentia.
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hierarchy of distributions for asymmetries

The proof and the derivations are based on climbing to a higher level of ab-
straction by focusing the discussion on a hierarchy of distributions based on fat-
tailedness.

Remark Test statistics can be arbitraged, or "fooled"in one direction, not the
other.

Let us build a hierarchy of distributions based on tail events. But, first, a discus-
sion of the link to the problem of induction.

From The Black Swan (Chapter 16):
This author has learned a few tricks from experience dealing with power laws:

whichever exponent one try to measure will be likely to be overestimated (recall
that a lower exponent implies a smaller role for large deviations)–what you
see is likely to be less Black Swannish than what you do not see. Let’s say I
generate a process that has an exponent of 1.7. You do not see what is inside
the engine, only the data coming out. If I ask you what the exponent is, odds
are that you will compute something like 2.4. You would do so even if you
had a million data points. The reason is that it takes a long time for some fat
tailed processes to reveal their properties, and you underestimate the severity
of the shock. Sometimes a fat tailed distribution can make you believe that it
is Gaussian, particularly when the process has mixtures. (Page 267, slightly
edited).

4.5 hierarchy of distributions in term of tails
Let D i be a class of probability measures, D i ⊂ D> i means in our terminology
that a random event "in"D i would necessarily "be in"D j , with j > i, and we can
express it as follows. Let AK be a one-tailed interval in R, unbounded on one side
K, s.a. A−K = (−∞ , K

]
or A+

K = [K , ∞), and µ( A) the probability measure on the
interval, which corresponds to µ i(A−K ) the cumulative distribution function for K
on the left, and µ i(A+

K ) = 1 − the CDF (that is, the exceedance probability) on the
right.

For continuous distributions, we can treat of the Radon-Nikodym derivatives for
two measures ∂µ i

∂µ j
over as the ratio of two probability with respect to a variable in

AK .

Definition 4.1 (Acceptance and Rejection).
We can define i) "right tail acceptance" as being subject to a strictly positive probability
of mistaking D+

i for D+
< i and ii) rejection as a claim that D+

> i . Likewise for what is
called "confirmation"and "disconfirmation”. Hence D+

i ⊂ D+
j if there exists a K0 ("in the

positive tail”) such that µ j(A+
K0

)>µ i(A+
K0

) and µ j(A+
K )>µ i(A+

K ) for all K > K0 , and left
tail acceptance if there exists a K0 ( "in the negative tail”) such that µ j ( A−K0

> µ i ( A−K0
)

and µ j(A−K )>µ i(A−K ) for all K < K0 .

The derivations are as follows. Simply, the effect of the scale of the distribution
(say, the variance in the finite second moment case) wanes in the tails. For the
classes of distributions up to the Gaussian, the point is a no brainer because of
compact support with 0 measure beyond a certain K. As as far as the Gaussian,
there are two brands, one reached as a limit of, say, a sum of n Bernouilli variables,
so the distribution will have compact support up to a multiple of n at infinity, that
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4.5 hierarchy of distributions in term of tails

is, in finite processes (what we call the "real world"where things are finite). The
second Gaussian category results from an approximation; it does not have compact
support but because of the exponential decline in the tails, it will be dominated
by power laws. To quote Adrien Douady, it has compact support for all practical
purposes.4

Let us focus on the right tail.

Case of Two Powerlaws

For powerlaws, let us consider the competing effects of scale, say σ (even in case of
nonfinite variance), and α tail exponent, with α > 1 . Let the density be

Pα,σ(x) = L(x)x−α−1

where L(x) is a slowly varying function,

rλ,k(x) ≡
Pλα,k σ(x)

Pα,σ(x)

By only perturbating the scale, we increase the tail by a certain factor, since
limx→∞ r1,k(x) = kα, which can be significant. But by perturbating both and looking

at the limit we get limx→∞ rλ,k(x) = λ kαλ
(

L
x

)α(−1+λ)
, where L is now a constant,

thus making the changes to α the tail exponent leading for large values of x.
Obviously, by symmetry, the same effect obtains in the left tail.

Rule 4.1.When comparing two power laws, regardless of parametrization of the scale
parameters for either distributions, the one with the lowest tail exponent will have
higher density in the tails.

Comparing Gaussian to Lognormal

Let us compare the Gaussian(µ, σ) to a Lognormal(m, s), in the right tail, and look
at how one dominates in the remote tails. There is no values of parameters σ and s
such that the PDF of the Normal exceeds that of the Lognormal in the tails. Assume

means of 0 for the Gaussian and the equivalent e
k2s2

2 for the Lognormal with no loss
of generality.

Simply, let us consider the the sign of d, the difference between the two densities,

d =
e
− log2(x)

2k2s2

ksx − e
− x2

2σ2

σ√
2π

by comparing the unscaled tail values of e
− log2(x)

2k2s2

ksx and e
− x2

2σ2

σ . Taking logarithms of

the ratio, δ(x) = x2

2σ2 −
log2(x)
2k2s2 − log(ksx) + log(σ), which is dominated by the first

4 Van Zwet,[cite]: Given two cumulative distribution functions F(x) and G(x), F has lighter tails than G
(and G has heavier tails than F) if the function G−1(F(x)) is convex for x ≥ 0.
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hierarchy of distributions for asymmetries

Table 10: Ranking distributions

Class Description

D1 True Thin Tails Compact support (e.g. :
Bernouilli, Binomial)

D2 Thin tails Gaussian reached organically
through summation of true thin
tails, by Central Limit; compact
support except at the limit n →
∞

D3a Conventional Thin
tails

Gaussian approximation of a
natural phenomenon

D3b Starter Fat Tails Higher kurtosis than the Gaus-
sian but rapid convergence to
Gaussian under summation

D5 Subexponential (e.g. lognormal)
D6 Supercubic α Cramer conditions do not hold

for t > 3,
∫

e−tx d(Fx) = ∞
D7 Infinite Variance Levy Stable α < 2 ,∫

e−txdF(x) = ∞
D8 Undefined First

Moment
Fuhgetaboutdit

term x2 as it is convex when the other terms are concave, so it will be > 0 for large
values of x independently of parameters.

Rule 4.2.Regardless of parametrization of the scale parameter (standard deviation) for
either distribution, a lognormal will produce asymptotically higher tail densities in the
positive domain than the Gaussian.

Case of Mixture of Gaussians

Let us return to the example of the mixture distribution N(0, σ) with probability
1− p and N(0, k σ) with the remaining probability p. The density of the second

regime weighted by p becomes p e
− x2

2k2 σ2

k
√

2πσ
. For large deviations of x, p

k e−
x2

2k2 is entirely
dominated by k, so regardless of the probability p > 0, k > 1 sets the terms of the
density.

In other words:

Rule 4.3.Regardless of the mixture probabilities, when combining two Gaussians, the
one with the higher standard deviations determines the density in the tails.

Which brings us to the following epistemological classification: [SEE CLASSIFI-
CATION IN EMBRECHTS & ALL FOR COMPARISON]
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4.5 hierarchy of distributions in term of tails

Degenerate

Bernoulli

Thin-Tailed from Convergence to Gaussian

COMPACT 

SUPPORT

Subexponential 

Supercubic Α £ 3

Lévy-Stable Α<2 

Α² 1

CRAMER

CONDITION

L1

LAW OF LARGE NUMBERS (WEAK) CONVERGENCE ISSUES

Gaussian from Lattice Approximation

Fuhgetaboudit

CENTRAL LIMIT — BERRY-ESSEEN

Figure 4.3: The tableau of Fat tails, along the various classifications for convergence purposes
(i.e., convergence to the law of large numbers, etc.)A variation around Embrechts et al [31],
but applied to the Radon-Nikodym derivatives.

A comment on 4.3

Gaussian From Convergence is Not Gaussian : We establish a demarcation be-
tween two levels of Gaussians. Adding Bernouilli variables or Binomials, according
to the random walk idea (or similar mechanism that generate Gaussians) always
leads to thinner tails to the true Gaussian.

Subgaussian domain for a review,[17], Kahane’s "gaussian shift"5:
Mixtures distributions entailing Di and Dj are classified with the highest level of

fat tails Dmax(i,j) regardless of the mixing. A mixture of Gaussians remains Gaus-
sian for large deviations, even if the local properties can be confusing in small sam-
ples, except for the situation of infinite nesting of stochastic volatilities discussed in
Chapter 6. Now a few rapidly stated rules.

Rule 4.4.(General Decision Making Heuristic). For any information entailing
nonbinary decision (see definition in Chapter x), rejection or acceptance of fitness to
pre-specified probability distributions, based on suprema of distance between supposed
probability distributions (say Kolmogorov Smirnoff and similar style) should only be

5 J.P. Kahane, "Local properties of functions interms of random Fourier series," Stud. Math., 19, No. i,
1-25 (1960)
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hierarchy of distributions for asymmetries

able to "accept" the fatter tail one and "reject"the lower tail, i.e., based on the criterion
i > j based on the classification above.

Warning 1 : Always remember that one does not observe probability distribu-
tions, only realizations. Every probabilistic statement needs to be discounted by
the probability of the parameter being away from the true one.

Warning 2 : Recall that we do not live in probability space, but payoff space.

Rule 4.5.(Decision Mistakes). Fatter tailed distributions are more likely to produce
a lower in-sample variance (using empirical estimators) than a distribution of thinner
tail of the same variance (in the finite variance case).

For the derivation, recall that (from 3.5), there in increase in observations in the
"tunnel"( a2, a3) in response to increase in fat-tailedness.

4.6 how to arbitrage kolmogorov-smirnov
Counterintuitively, when one raises the kurtosis, as in Figure 4.1.4.1 the time series
looks "quieter”. Simply, the storms are rare but deep. This leads to mistaken
illusion of low volatility when in fact it is just high kurtosis, something that fooled
people big-time with the story of the "great moderation"as risks were accumulating
and nobody was realizing that fragility was increasing, like dynamite accumulating
under the structure.

Kolmogorov - Smirnov, Shkmolgorov-Smirnoff Remarkably, the fat tailed series
passes general test of normality with better marks than the thin-tailed one, since it
displays a lower variance. The problem discussed with with Avital Pilpel (Taleb and
Pilpel, 2001, 2004, 2007) is that Kolmogorov-Smirnov and similar tests of normality
are inherently self-referential.

These probability distributions are not directly observable, which makes any risk calcula-
tion suspicious since it hinges on knowledge about these distributions. Do we have enough
data? If the distribution is, say, the traditional bell-shaped Gaussian, then yes, we may
say that we have sufficient data. But if the distribution is not from such well-bred family,
then we do not have enough data. But how do we know which distribution we have on our
hands? Well, from the data itself .

If one needs a probability distribution to gauge knowledge about the future behavior of
the distribution from its past results, and if, at the same time, one needs the past to derive
a probability distribution in the first place, then we are facing a severe regress loop−−a
problem of self reference akin to that of Epimenides the Cretan saying whether the Cretans
are liars or not liars. And this self-reference problem is only the beginning.

(Taleb and Pilpel, 2001, 2004)
Also,
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4.6 how to arbitrage kolmogorov-smirnov

Table 11: Comparing the Fake and genuine Gaussians (Figure 4.1.4.1) and subjecting them
to a battery of tests. Note that some tests, such as the Jarque-Bera test, are more relevant to
fat tails as they include the payoffs.

Table of the "fake"Gaussian when not busted Let us run a more involved battery
of statistical tests (but consider that it is a single run, one historical simulation).

Fake Distr

Statistic P-Value
Anderson-Darling 0.406988 0.354835
Cramér-von Mises 0.0624829 0.357839
Jarque-Bera ALM 1.46412 0.472029
Kolmogorov-Smirnov 0.0242912 0.167368
Kuiper 0.0424013 0.110324
Mardia Combined 1.46412 0.472029
Mardia Kurtosis −0.876786 0.380603
Mardia Skewness 0.7466 0.387555
Pearson χ2 43.4276 0.041549
Shapiro-Wilk 0.998193 0.372054
Watson U2 0.0607437 0.326458

Genuine

Statistic P-Value
Anderson-Darling 0.656362 0.0854403
Cramér-von Mises 0.0931212 0.138087
Jarque-Bera ALM 3.90387 0.136656
Kolmogorov-Smirnov 0.023499 0.204809
Kuiper 0.0410144 0.144466
Mardia Combined 3.90387 0.136656
Mardia Kurtosis −1.83609 0.066344
Mardia Skewness 0.620678 0.430795
Pearson χ2 33.7093 0.250061
Shapiro-Wilk 0.997386 0.107481
Watson U2 0.0914161 0.116241

From the Glossary in The Black Swan . Statistical regress argument (or the
problem of the circularity of statistics): We need data to discover a probability distribution.
How do we know if we have enough? From the probability distribution. If it is a Gaussian,
then a few points of data will suffice. How do we know it is a Gaussian? From the data. So
we need the data to tell us what probability distribution to assume, and we need a probability
distribution to tell us how much data we need. This causes a severe regress argument, which
is somewhat shamelessly circumvented by resorting to the Gaussian and its kin.

A comment on the Kolmogorov Statistic It is key that the Kolmogorov-Smirnov
test doesn’t affect payoffs and higher moments, as it only focuses on probabilities.
It is a severe problem because the approximation will not take large deviations
into account, and doesn’t make it useable for our purpose. But that’s not the only
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hierarchy of distributions for asymmetries

Table 12: Table of the "fake" Gaussian when busted. But recall that we have a small chance
of observing the true distribution.

Busted Fake

Statistic P-Value
Anderson-Darling 376.05 0.
Cramér-von Mises 80.734 0.
Jarque-Bera ALM 4.21× 107 0.
Kolmogorov-Smirnov 0.494547 0.
Kuiper 0.967 0.
Mardia Combined 4.21× 107 0.
Mardia Kurtosis 6430. 1.5× 10−8979680

Mardia Skewness 166432. 1.07× 10−36143

Pearson χ2 30585.7 3.28× 10−6596

Shapiro-Wilk 0.014 1.91× 10−57

Watson U2 80.58 0.

D

1 2 3 4

x

0.2

0.4

0.6

0.8

1.0

CDF

Figure 4.4: The Kolmorov-Smirnov
Gap. D is the measure of the largest
absolute divergence between the can-
didate and the target distribution.

problem. It is, as we mentioned, conditioned on sample size while claiming to be
nonparametric.

Let us see how it works. Take the historical series and find the maximum point
of divergence with F(.) the cumulative of the proposed distribution to test against:

D = sup

(∣∣∣∣∣1j J

∑
i=1

Xt0+i∆t − F
(
Xt0+j∆t

)∣∣∣∣∣
)n

j=1


where n = T−t0

∆t
We will get more technical in the discussion of convergence, take for now that

the Kolmogorov statistic, that is, the distribution of D, is expressive of convergence,
and should collapse with n. The idea is that, by a Brownian Bridge argument (that
is a process pinned on both sides, with intermediate steps subjected to double

conditioning), Dj =
∣∣∣∣(∑J

i=1 X∆ti+t0
j − F

(
X∆tj+t0

))∣∣∣∣which is Uniformly distributed.
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4.7 mistaking evidence for anecdotes & the reverse

The probability of exceeding D, P>D = H
(√

nD
)
, where H is the cumulative

distribution function of the Kolmogorov-Smirnov distribution,

H(t) = 1− 2
∞

∑
i=1

(−1)i−1e−2i2t2

We can see that the main idea reposes on a decay of
√

nD with large values of n.
So we can easily fool the testing by proposing distributions with a small probability
of very large jump, where the probability of switch . 1

n .
The mistake in misinterpreting Feller: the distribution of Dwill be uniform in-

dependently of the distribution under scrutiny, or the two distributions to be com-
pared. But it does not mean that the test is immune to sample sizen, that is, the
possibility of jump with a probability an inverse function of n.

Use of the supremum of divergence

Note another manifestation of the error of ignoring the effect of the largest devia-
tion. As we saw with Kolmogorov-Smirnoff and other rigorous methods in judging
a probability distribution, one focuses on the maximum divergence, the supremum,
as information. Another unused today but very potent technique, initially by Paul
Levy (1924), called the concentration function, also reposes on the use of a maximal
distance:

From Petrov (1995):

Qλ(X) ≡ sup
x

P(x ≤ X ≤ x + λ)

for every λ ≥ 0.
We will make use of it in discussion of the behavior of the sum of random vari-

ables and the law of large numbers.

4.7 mistaking evidence for anecdotes & the re-
verse

Now some sad, very sad comments.

[MOVE TO CHAPTER ON SOCIAL SCIENCE] I emitted the following argument
in a comment looking for maximal divergence: "Had a book proclaiming The Long
Peace (on how violence has dropped) been published in 1913

3
4 it would carry similar

arguments to those in Pinker’s book", meaning that inability of an estimator period
T to explain period > t, using the idea of maximum divergence. The author of the
book complained that I was using "hindsight"to find the largest deviation, implying
lack of rigor. This is a standard error in social science: data mining everywhere and
not understanding the difference between meaningful disconfirmatory observation
and anecdote.

We will revisit the problem upon discussing the "N = 1" fallacy (that is, the
fallacy of thinking that N = 1 is systematically insufficient sample). Some social
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hierarchy of distributions for asymmetries

Figure 4.5: The good news is that we
know exactly what not to call "ev-
idence" in complex domains where
one goes counter to the principle of
"nature as a LLN statistician".

"scientists" wrote about my approach to this problem, stating among other equally
ignorant comments, something to the effect that "the plural of anecdotes is not data".
This elementary violation of the logic of inference from data is very common with
social scientists as we will see in Chapter 3, as their life is based on mechanistic and
primitive approaches to probability that miss the asymmetry. Yet, and here is the
very, very sad part: social science is the main consumer of statistical methods.

The Good News

There are domains where "confirmatory evidence" works, or can be used for de-
cisions. But for that one needs the LLN to operate rather quickly. The idea of
"scientific evidence" in fat tailed domains leads to pathologies: it may work "for
knowledge" and some limited applications, but not when it comes to risky deci-
sions.

Further Reading

Doob (1949) [27].
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5 E F F E C T S O F H I G H E R O R D E R S O F
U N C E R TA I N T Y

Chapter Summary 5: The Spectrum Between Uncertainty and Risk. There
has been a bit of discussions about the distinction between "uncertainty"
and "risk". We believe in gradation of uncertainty at the level of the proba-
bility distribution itself (a "meta" or higher order of uncertainty.) One end
of the spectrum, "Knightian risk", is not available for us mortals in the real
world. We show how the effect on fat tails and on the calibration of tail
exponents and reveal inconsistencies in models such as Markowitz or those
used for intertemporal discounting (as many violations of "rationality" aren’t
violations .

5.1 meta-probability distribution

When one assumes knowledge of a probability distribution, but has uncertainty
attending the parameters, or when one has no knowledge of which probability
distribution to consider, the situation is called "uncertainty in the Knightian sense"
by decision theorisrs(Knight, 1923). "Risk" is when the probabilities are computable
without an error rate. Such an animal does not exist in the real world. The entire
distinction is a lunacy, since no parameter should be rationally computed witout
an error rate. We find it preferable to talk about degrees of uncertainty about
risk/uncertainty, using metadistribution, or metaprobability.

The Effect of Estimation Error, General Case

The idea of model error from missed uncertainty attending the parameters (another
layer of randomness) is as follows.

Most estimations in social science, economics (and elsewhere) take, as input, an
average or expected parameter,

−
α =

∫
α φ(α) dα , (5.1)

where α is φ distributed (deemed to be so a priori or from past samples), and
regardless of the dispersion of α, build a probability distribution for x that relies

on the mean estimated parameter, p(X = x)= p
(

x
∣∣∣−α ), rather than the more

appropriate metaprobability adjusted probability for the density:

p(x ) =
∫

φ(α) dα (5.2)
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Figure 5.1: Log-log plot illustration of the asymptotic tail exponent with two states.

In other words, if one is not certain about a parameter α, there is an inescapable
layer of stochasticity; such stochasticity raises the expected (metaprobability-adjusted)
probability if it is < 1

2 and lowers it otherwise. The uncertainty is fundamentally
epistemic, includes incertitude, in the sense of lack of certainty about the parameter.

The model bias becomes an equivalent of the Jensen gap (the difference between
the two sides of Jensen’s inequality), typically positive since probability is convex
away from the center of the distribution. We get the bias ω A from the differences
in the steps in integration

ω A =
∫

φ(α) p(x |α) dα − p
(

x |
∫

αφ(α) dα

)

With f (x ) a function , f (x ) = x for the mean, etc., we get the higher order bias
ω A ′

(5.3)ω A ′ =
∫ (∫

φ(α) f (x ) p(x |α) dα

)
dx −

∫
f (x ) p

(
x |
∫

α φ(α) dα

)
dx

Now assume the distribution of α as discrete n states, with α = (α i )n
i=1 each with

associated probability φ = φi _i=1^n, ∑n
i=1 φi = 1. Then 5.2 becomes

p(x ) = φi

(
n

∑
i=1

p (x |α i )

)
(5.4)

So far this holds for α any parameter of any distribution.
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5.2 metadistribution and the calibration of power laws

5.2 metadistribution and the calibration of power
laws

Remark 5.1.
In the presence of a layer of metadistributions (from uncertainty about the parameters), the
asymptotic tail exponent for a powerlaw corresponds to the lowest possible tail exponent
regardless of its probability.

This explains "Black Swan" effects, i.e., why measurements tend to chronically
underestimate tail contributions, rather than merely deliver imprecise but unbiased
estimates.

When the perturbation affects the standard deviation of a Gaussian or similar
nonpowerlaw tailed distribution, the end product is the weighted average of the
probabilities. However, a powerlaw distribution with errors about the possible
tail exponent will bear the asymptotic properties of the lowest exponent, not the
average exponent.

Now assume p(X=x) a standard Pareto Distribution with α the tail exponent
being estimated, p(x |α) = αx−α−1 xα

min , where xminis the lower bound for x,

p(x ) =
n

∑
i=1

α i x−α i−1 xα i
min φi

Taking it to the limit

limit
x→∞

xα∗+1
n

∑
i=1

α i x−α i−1 xα i
min φi = K

where K is a strictly positive constant and α∗ = min α i
1≤ i≤n

. In other words ∑n
i=1 α i x−α i−1 xα i

min φi

is asymptotically equivalent to a constant times xα∗+1 . The lowest parameter in the
space of all possibilities becomes the dominant parameter for the tail exponent.

 Bias ΩA

1.3 1.4 1.5 1.6 1.7 1.8
STD

0.0001

0.0002

0.0003

0.0004

P>x

Figure 5.2: Illustration of the convexity bias for a Gaussian from raising small probabilities:
The plot shows the STD effect on P>x, and compares P>6 with a STD of 1.5 compared to
P> 6 assuming a linear combination of 1.2 and 1.8 (here a(1)=1/5).
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effects of higher orders of uncertainty

Figure 5.1 shows the different situations: a) p(x|−α), b) ∑n
i=1 p (x |αi ) φi and c)

p (x |α∗ ). We can see how the last two converge. The asymptotic Jensen Gap ωA

becomes p(x|α∗)− p(x|−α).

Implications

Whenever we estimate the tail exponent from samples, we are likely to underesti-
mate the thickness of the tails, an observation made about Monte Carlo generated
α-stable variates and the estimated results (the “Weron effect”)[121].

The higher the estimation variance, the lower the true exponent.

The asymptotic exponent is the lowest possible one. It does not even require
estimation.

Metaprobabilistically, if one isn’t sure about the probability distribution, and
there is a probability that the variable is unbounded and “could be” powerlaw
distributed, then it is powerlaw distributed, and of the lowest exponent.

The obvious conclusion is to in the presence of powerlaw tails, focus on chang-
ing payoffs to clip tail exposures to limit ωA′ and “robustify” tail exposures, making
the computation problem go away.

5.3 the effect of metaprobability on fat tails

Recall that the tail fattening methods in 3.4 and 3.6.These are based on random-
izing the variance. Small probabilities rise precisely because they are convex to
perturbations of the parameters (the scale) of the probability distribution.

5.4 fukushima, or how errors compound

“Risk management failed on several levels at Fukushima Daiichi. Both TEPCO and
its captured regulator bear responsibility. First, highly tailored geophysical models
predicted an infinitesimal chance of the region suffering an earthquake as powerful
as the Tohoku quake. This model uses historical seismic data to estimate the local
frequency of earthquakes of various magnitudes; none of the quakes in the data
was bigger than magnitude 8.0. Second, the plant’s risk analysis did not consider
the type of cascading, systemic failures that precipitated the meltdown. TEPCO
never conceived of a situation in which the reactors shut down in response to an
earthquake, and a tsunami topped the seawall, and the cooling pools inside the
reactor buildings were overstuffed with spent fuel rods, and the main control room
became too radioactive for workers to survive, and damage to local infrastructure
delayed reinforcement, and hydrogen explosions breached the reactors’ outer con-
tainment structures. Instead, TEPCO and its regulators addressed each of these
risks independently and judged the plant safe to operate as is.”Nick Werle, n+1,
published by the n+1 Foundation, Brooklyn NY
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5.5 the markowitz inconsistency

5.5 the markowitz inconsistency
Assume that someone tells you that the probability of an event is exactly zero. You
ask him where he got this from. "Baal told me" is the answer. In such case, the
person is coherent, but would be deemed unrealistic by non-Baalists. But if on
the other hand, the person tells you "I estimated it to be zero," we have a prob-
lem. The person is both unrealistic and inconsistent. Something estimated needs to
have an estimation error. So probability cannot be zero if it is estimated, its lower
bound is linked to the estimation error; the higher the estimation error, the higher
the probability, up to a point. As with Laplace’s argument of total ignorance, an
infinite estimation error pushes the probability toward 1

2 . We will return to the
implication of the mistake; take for now that anything estimating a parameter and
then putting it into an equation is different from estimating the equation across
parameters. And Markowitz was inconsistent by starting his "seminal" paper with
"Assume you know E and V" (that is, the expectation and the variance). At the end
of the paper he accepts that they need to be estimated, and what is worse, with
a combination of statistical techniques and the "judgment of practical men." Well,
if these parameters need to be estimated, with an error, then the derivations need
to be written differently and, of course, we would have no such model. Economic
models are extremely fragilefragile to assumptions, in the sense that a slight alter-
ation in these assumptions can lead to extremely consequential differences in the

results. The perturbations can be seen as follows. Let
⇀
X = (X1, X2, . . . , Xm) be the

vector of random variables representing returns. Consider the joint probability dis-
tribution f (x1, . . . , xm) . We denote the m-variate multivariate Normal distribution
by N(

⇀
µ , Σ), with mean vector

⇀
µ , variance-covariance matrix Σ, and joint pdf,

f
(
⇀
x
)

= (2π)−m/2|Σ|−1/2exp
(
−1

2

(
⇀
x −⇀

µ
)T

Σ−1
(
⇀
x −⇀

µ
))

(5.5)

where
⇀
x = (x1, . . . , xm) ∈ Rm, and Σ is a symmetric, positive definite (m ×

m) matrix. The weights matrix
⇀
Ω = (ω1, . . . , ωm),normalized, with ∑N

i=1 ωi = 1
(allowing exposures to be both positive and negative): The scalar of concern is;
r = ΩT .X, which happens to be normally distributed, with variance

v = ~ωT .Σ.~ω

The Markowitz portfolio construction, through simple optimization, gets an opti-
mal ~ω∗, obtained by, say, minimizing variance under constraints, getting the small-
est ~ωT .Σ.~ω under constraints of returns, a standard Lagrange multiplier. So done
statically, the problem gives a certain result that misses the metadistribution. Now
the problem is that the covariance matrix is a random object, and needs to be treated
as so. So let us focus on what can happen under these conditions:

Route 1: The stochastic volatility route This route is insufficient but can reveal
structural defects for the construction. We can apply the same simplied variance
preserving heuristic as in 3.4 to fatten the tails. Where a is a scalar that determines
the intensity of stochastic volatility, Σ1 = Σ(1 + a) and Σ2 = Σ(1− a). Simply, given
the conservation of the Gaussian distribution under weighted summation, maps to

129



effects of higher orders of uncertainty

v(1 + a) and v(1− a) for a Gaussian and we could see the same effect as in 3.4. The
corresponding increase in fragility is explained in Chapter 17.

Route 2: Full random parameters route Now one can have a fully random matrix
—not just the overal level of the covariance matrix. The problem is working with
matrices is cumbersome, particularly in higher dimensions, because one element of
the covariance can vary unconstrained, but the degrees of freedom are now reduced
for the matrix to remain positive definite. A possible technique is to extract the
principal components, necessarily orthogonal, and randomize them without such
restrictions.
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5.6 psychological pseudo-biases under second layer of uncertainty.

5.6 psychological pseudo-biases under second layer
of uncertainty.

Often psychologists and behavioral economists find "irrational behavior" (or call
it under something more polite like "biased") as agents do not appear to follow a
normative model and violate their models of rationality. But almost all these corre-
spond to missing a second layer of uncertainty by a dinky-toy first-order model that
doesn’t get nonlinearities − it is the researcher who is making a mistake, not the
real-world agent. Recall that the expansion from "small world" to "larger world" can
be simulated by perturbation of parameters, or "stochasticization", that is making
something that appears deterministic a random variable itself. Benartzi and Thaler
[8], for instance, find an explanation that agents are victims of a disease labelled
"myopic loss aversion" in not investing enough in equities, not realizing that these
agents may have a more complex, fat-tailed model. Under fat tails, no such puzzle
exists, and if it does, it is certainly not from such myopia.

This approach invites "paternalism" in "nudging" the preferences of agents in a
manner to fit professors-without-skin-in-the-game-using-wrong-models.

5.6.1 The pathologization fallacy

Today many mathematical or conceptual models that are claimed to be rigorous
are based upon fixed parameters that miss a layer of uncertainty. Such models are
deemed rational in the sense that they are logically derived from their assumptions,
and, further, can be used to assess rationality by examining deviations from such
models, as indicators of irrationality. Except that it is often the modeler who is
using an incomplete representation of the reality, hence using an erroneous bench-
mark for rationality. Often the modelers are not familiar with the dynamics of com-
plex systems or use antiquated statistical methods that do not take into account
fat-tails and make inferences that would not be acceptable under different classes
of probability distributions. Many biases, such as the ones used by Cass Sunstein,
about the overestimation of the probabilities of rare events in fact correspond to the
testers using a bad probability model that is thin-tailed.

It has became popular to claim irrationality for GMO and other skepticism on the
part of the general public—not realizing that there is in fact an "expert problem"
and such skepticism is healthy and even necessary for survival. For instance, in
The Rational Animal [? ], the authors pathologize people for not accepting GMOs
although "the World Health Organization has never found evidence of ill effects," a
standard confusion of evidence of absence and absence of evidence. Such patholo-
gizing is similar to behavioral researchers labeling hyperbolic discounting as "irra-
tional" when in fact it is largely the researcher who has a very narrow model and
richer models make the "irrationality" go away, as we will see further down.

These researchers fail to understand that humans may have precautionary prin-
ciples against systemic risks, and can be skeptical of the untested consequences
of policies for deeply rational reasons, even if they do not express such fears in
academic format.
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Hidden convexities Let us use our approach in detecting convexity to three spe-
cific problems: 1) the myopic loss aversion that we just discussed, 2) time prefer-
ences, 3) probability matching.

Myopic loss aversion

Take the prospect theory valuation w function for x changes in wealth.

wλ,α(x) = xα
1x≥0 − λ(−xα)1x<0

Where φµt,σ
√

t(x) is the Normal Distribution density with corresponding mean
and standard deviation (scaled by t)

The expected "utility" (in the prospect sense):

H0(t) =
∫ ∞

−∞
wλ,α(x)φµt,σ

√
t(x) dx (5.6)
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(5.7)

=
1√
π

2
α
2−2

(
1

σ2t

)− α
2

(
Γ
(

α+1
2

)(
σαtα/2

(
1

σ2t

)α/2
− λσ

√
t
√

1
σ2t

)
1F1

(
− α

2 ; 1
2 ;− tµ2

2σ2

)
+ 1√

2σ
µΓ
(

α
2 + 1

)
(

σα+1t
α
2 +1
(

1
σ2t

) α+1
2 + σαt

α+1
2

(
1

σ2t

)α/2
+ 2λσt

√
1

σ2t

)
1F1

(
1−α

2 ; 3
2 ;− tµ2

2σ2

))
We can see from 5.7 that the more frequent sampling of the performance trans-

lates into worse utility. So what Benartzi and Thaler did was try to find the sam-
pling period "myopia" that translates into the sampling frequency that causes the
"premium" —the error being that they missed second order effects.

Now under variations of σ with stochatic effects, heuristically captured, the story
changes: what if there is a very small probability that the variance gets multiplied
by a large number, with the total variance remaining the same? The key here is that
we are not even changing the variance at all: we are only shifting the distribution
to the tails. We are here generously assuming that by the law of large numbers it
was established that the "equity premium puzzle" was true and that stocks really
outperformed bonds.

So we switch between two states, (1 + a) σ2 w.p. p and (1− a) w.p. (1− p).
Rewriting 5.6

Ha,p(t) =
∫ ∞

−∞
wλ,α(x)

(
p φµ t,

√
1+a σ

√
t(x) + (1− p) φµ t,

√
1−a σ

√
t(x)
)

dx (5.8)

Result Conclusively, as can be seen in figures 5.3 and 5.4, second order effects
cancel the statements made from "myopic" loss aversion. This doesn’t mean that
myopia doesn’t have effects, rather that it cannot explain the "equity premium", not
from the outside (i.e. the distribution might have different returns", but from the
inside, owing to the structure of the Kahneman-Tversky value function v(x).

Comment We used the (1+a) heuristic largely for illustrative reasons; we could use
a full distribution for σ2 with similar results. For instance the gamma distribution

with density f (v) =
vγ−1e−

αv
V ( V

α )
−γ

Γ(γ) with expectation V matching the variance used
in the "equity premium" theory.

Rewriting 5.8 under that form,∫ ∞

−∞

∫ ∞

0
wλ,α(x)φµ t,

√
v t(x) f (v) dv dx

Which has a closed form solution (though a bit lengthy for here).

Time preference under model error

This author once watched with a great deal of horror one Laibson [67] at a confer-
ence in Columbia University present the idea that having one massage today to two
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tomorrow, but reversing in a year from now is irrational and we need to remedy it
with some policy. (For a review of time discounting and intertemporal preferences,
see [43], as economists temps to impart what seems to be a varying "discount rate"
in a simplified model).1

Intuitively, what if I introduce the probability that the person offering the mas-
sage is full of balloney? It would clearly make me both prefer immediacy at almost
any cost and conditionally on his being around at a future date, reverse the prefer-
ence. This is what we will model next.

First, time discounting has to have a geometric form, so preference doesn’t be-
come negative: linear discounting of the form Ct, where C is a constant ant t is time
into the future is ruled out: we need something like Ct or, to extract the rate, (1 + k)t

which can be mathematically further simplified into an exponential, by taking it to
the continuous time limit. Exponential discounting has the form e−k t. Effectively,
such a discounting method using a shallow model prevents "time inconsistency",
so with δ < t:

lim
t→∞

e−k t

e−k (t−δ) = e−k δ

Now add another layer of stochasticity: the discount parameter, for which we
use the symbol λ, is now stochastic.

So we now can only treat H(t) as

H(t) =
∫

e−λ tφ(λ) dλ

It is easy to prove the general case that under symmetric stochasticization of
intensity ∆λ (that is, with probabilities 1

2 around the center of the distribution)
using the same technique we did in 3.4:

H′(t, ∆λ) =
1
2

(
e−(λ−∆λ)t + e−(λ+∆λ)t

)
H′(t, ∆λ)
H′(t, 0)

=
1
2

eλt
(

e(−∆λ−λ)t + e(∆λ−λ)t
)

= cosh(∆ λt)

Where cosh is the cosine hyperbolic function − which will converge to a certain
value where intertemporal preferences are flat in the future.

Example: Gamma Distribution Under the gamma distribution with support in

R+, with parameters α and β, φ(λ) = β−αλα−1e
− λ

β

Γ(α)
we get:

H(t, α, β) =
∫ ∞

0
e−λ t

(
β−αλα−1e−

λ
β

)
Γ(α)

dλ = β−α

(
1
β

+ t
)−α

so
lim
t→∞

H(t, α, β)
H(t− δ, α, β)

= 1

1 I discovered that [38] Farmer and Geanakoplos have applied a similar approach to Hyperbolic discount-
ing
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Meaning that preferences become flat in the future no matter how steep they are in
the present, which explains the drop in discount rate in the economics literature.

Further, fudging the distribution and normalizing it, when

φ(λ)=
e−

λ
k

k
,

we get the normatively obtained (not empirical pathology) so-called hyperbolic dis-
counting:

H(t) =
1

1 + k t
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6 L A R G E N U M B E R S A N D C LT I N T H E
R E A L W O R L D

Chapter Summary 6: The Law of Large Numbers is the foundation of sta-
tistical knowledge –or, even (inductive) knowledge tout court. The behavior
of the sum of random variables allows us to get to the asymptote and use
handy asymptotic properties. However real life is more complicated. We can-
not talk about LLN without figuring out the speed of convergence, which,
when it is at

√
n, is only so asymptotically. Further, in some cases the LLN

doesn’t work at all. For very fat tailed, under the slightest parametric error,
it will be more than 400 times slower than thought.

You observe data and get some confidence that the average is represented by
the sample thanks to a standard metrified "n". Now what if the data were fat
tailed? How much more do you need? What if the model were uncertain –we had
uncertainty about the parameters or the probability distribution itself?

Main Results In addition to explicit extractions of partial expectations for
alpha stable distributions, one main result in this paper is the expression of
how uncertainty about parameters (in terms of parameter volatility) translates
into a larger (or smaller) required n. Model Uncertainty The practical import
is that model uncertainty worsens inference, in a quantifiable way.

6.0.2 The "Pinker Problem"

It is also necessary to debunk a fallacy: we simply do not have enough data with
commonly discussed fat-tailed processes to naively estimate a sum and make series
of claims about stability of systems, pathology of people reacting to risks, etc. A
surprising result: for the case with equivalent tails to the "Pareto 80/20 rule" (a tail
exponent α = 1.16) one needs 1011 more data than the Gaussian.

Take a certain sample size in the conventional Gaussian domain, say n = 30 or
some other such heuristically used number. Assuming we are confortable with
such a number of summands, how much larger (or smaller) n does one need for the
same error under a different process? And how do we define errors in the absence
of standard deviation which might not exist (power laws with exponents close to
2), or be too unreliable (power laws with exponents > 2, that is finite variance but
infinite kurtosis).

It is strange that given the dominant role of fat tails nobody thought of calculating
some practical equivalence table. How can people compare averages concerning
street crime (very thin tailed) to casualties from war (very fat tailed) without some
sample adjustment?1

1 The Pinker Problem A class of naive empiricism. It has been named so in reference to sloppy use of
statistical techniques in social science and policy making, based on a theory promoted by the science
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Figure 6.1: How thin tails (Gaussian) and fat tails (1< α ≤2) converge to the mean.

writer S. Pinker [88] about the drop of violence that is based on such statistical fallacies since wars
–unlike domestic violence –are fat tailed. But this is a very general problem with the (irresponsible)
mechanistic use of statistical methods in social science and biology.
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6.1 the problem of matching errors

Perhaps the problem lies at the core of the law of large numbers: the average is
not as "visible" as other statistical dimentions; there is no sound statistical proce-
dure to derive the properties of a powerlaw tailed data by estimating the mean –
typically estimation is done by fitting the tail exponent (via, say, the Hill estimator
or some other method), or dealing with extrema, yet it remains that many articles
make comparisons about the mean since it is what descriptive statistics and, alas,
decisions, are based on.

6.1 the problem of matching errors
By the weak law of large numbers, consider a sum of random variables X1, X2,...,
Xn independent and identically distributed with finite mean m, that is E[Xi] < ∞,
then 1

n ∑1≤i≤n Xi converges to m in probability, as n→ ∞. And the idea is that we
live with finite n.

We get most of the intuitions from closed-form and semi-closed form expressions
working with:

• stable distributions (which allow for a broad span of fat tails by varying the α
exponent, along with the asymmetry via the β coefficient

• stable distributions with mixed α exponent.

• other symmetric distributions with fat-tails (such as mixed Gaussians, Gamma-
Variance Gaussians, or simple stochastic volatility)

More complicated situations entailing more numerical tinkering are also covered:
Pareto classes, lognormal, etc.

Instability of Mean Deviation

Indexing with p the property of the variable Xp and g for Xg the Gaussian:{
np : E

(∣∣∣∣∣
np

∑
Xp

i −mp

np

∣∣∣∣∣
)

= E

(∣∣∣∣∣
ng

∑
Xg

i −mg

ng

∣∣∣∣∣
)}

(6.1)

And since we know that convergence for the Gaussian happens at speed n
1
2 , we

can compare to convergence of other classes.
We are expressing in Equation 6.1 the expected error (that is, a risk function) in

L1 as mean absolute deviation from the observed average, to accommodate absence
of variance –but assuming of course existence of first moment without which there
is no point discussing averages.

Typically, in statistical inference, one uses standard deviations of the observations
to establish the sufficiency of n. But in fat tailed data standard deviations do not
exist, or, worse, when they exist, as in powerlaw with tail exponent > 3, they are
extremely unstable, particularly in cases where kurtosis is infinite.

Using mean deviations of the samples (when these exist) doesn’t accommodate
the fact that fat tailed data hide properties. The "volatility of volatility", or the
dispersion around the mean deviation increases nonlinearly as the tails get fatter.
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Figure 6.2: The ratio of cumulants for a symmetric powerlaw, as a function of the tail expo-
nent.

For instance, a stable distribution with tail exponent at 3
2 matched to exactly the

same mean deviation as the Gaussian will deliver measurements of mean deviation
1.4 times as unstable as the Gaussian.

Using mean absolute deviation for "volatility", and its mean deviation "volatility
of volatility" expressed in the L1 norm, or C1 and C2 cumulant:

C1 = E(|X−m|)

C2 = E (|X−E(|X−m|)|)

we have in the Gaussian case indexed by g:

Cg
2 =

(
erf(

1√
π

+ e−1/π

)
Cg

1

which is ≈ 1.30 Cg
1 .

For a powerlaw distribution, cumulants are more unwieldy:

Cα=3/2
1 =

2
√

6
π Γ
( 5

4
)

Γ
( 3

4
) σ

Move to appendix
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6.2 generalizing mean deviation as partial expectation

Cα =3/2
2 =

1
2
√

6π3/2Γ3
1
(
πΓ2

1 + Γ2
3
)

5/4
σ

(
384π5/4Γ3

2Γ5/2
1 + 24π9/4Γ2Γ9/2

1 − 2π9/4
√

Γ2
4
√

πΓ2
1 + Γ2

3Γ9/2
1 H1

+ 1536Γ5
2

4
√

πΓ2
1 + Γ2

3H2 + π3 4
√

πΓ2
1 + Γ2

3

(
3
√

2Γ3
1 + 3Γ3 (H2 + 2)− 2 4

√
2π3/4H1

))

where Γ1 = Γ
( 3

4
)
, Γ2 = Γ

( 5
4
)
, Γ3 = Γ

(
1
4

)
, H1 = 2F1

(
3
4 , 5

4 ; 7
4 ;−πΓ2

1
Γ2

3

)
, and H2 =

2F1

(
1
2 , 5

4 ; 3
2 ;− Γ2

3
πΓ2

1

)
.

Further, a sum of Gaussian variables will have its extreme values distributed as
a Gumbel while a sum of fat tailed will follow a Fréchet distribution regardless of
the the number of summands. The difference is not trivial, as shown in figures , as
in 106 realizations for an average with 100 summands, we can be expected observe
maxima > 4000× the average while for a Gaussian we can hardly encounter more
than > 5×.

6.2 generalizing mean deviation as partial expec-
tation

It is unfortunate that even if one matches mean deviations, the dispersion of the
distributions of the mean deviations (and their skewness) would be such that a
"tail" would remain markedly different in spite of a number of summands that
allows the matching of the first order cumulant. So we can match the special part
of the distribution, the expectation > K or < K, where K can be any arbitrary level.

Let Ψ(t) be the characteristic function of the random variable. Let θ be the Heavi-
side theta function. Since sgn(x) = 2θ(x)− 1

Ψθ(t) =
∫ ∞

−∞
eitx (2θ(x− K)− 1) dx =

2ieiKt

t

And the special expectation becomes, by convoluting the Fourier transforms:

E(X|X>K) = −i
∂

∂t

∫ ∞

−∞
Ψ(t− u)Ψθ(u)du|t=0 (6.2)

Mean deviation becomes a special case of equation 6.2, E(|X|) = E(X|X>µ) +
E(−X|X<µ) = 2E(X|X>µ).

6.3 class of stable distributions
Assume alpha-stable the class S of probability distribution that is closed under
convolution: S(α, β, µ, σ) represents the stable distribution with tail index α ∈ (0, 2],
symmetry parameter β ∈ [0, 1], location parameter µ ∈ R, and scale parameter
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σ ∈ R+. The Generalized Central Limit Theorem gives sequences an and bn such
that the distribution of the shifted and rescaled sum Zn = (∑n

i Xi − an) /bn of n
i.i.d. random variates Xi the distribution function of which FX(x) has asymptotes
1 − cx−α as x → +∞ and d(−x)−α as x → −∞ weakly converges to the stable
distribution

S(∧α,2,10<α<2
c− d
c + d

, 0, 1).

We note that the characteristic functions are real for all symmetric distributions.
[We also note that the convergence is not clear across papers[119] but this doesn’t
apply to symmetric distributions.]

Note that the tail exponent α used in non stable cases is somewhat, but not fully,
different for α = 2, the Gaussian case where it ceases to be a powerlaw –the main
difference is in the asymptotic interpretation. But for convention we retain the same
symbol as it corresponds to tail exponent but use it differently in more general non-
stable power law contexts.

The characteristic function Ψ(t) of a variable Xα with scale σ will be, using the
expression for α > 1, See Zolotarev[125], Samorodnitsky and Taqqu[98]:

Ψα = exp
(

iµt− |tσ|α
(

1− iβ tan
(πα

2

)
sgn(t)

))
which, for an n-summed variable (the equivalent of mixing with equal weights),
becomes:

Ψα(t) = exp
(

iµnt−
∣∣∣n 1

α tσ
∣∣∣α (1− iβ tan

(πα

2

)
sgn(t)

))

6.3.1 Results

Let Xα ∈ S, be the centered variable with a mean of zero, Xα = (Yα − µ) . We write.
E(α, β, µ, σ, K) ≡ E(Xα|Xα>K) under the stable distribution above. From Equation
6.2:

E(X|X>K) =
∫ ∞

−∞

1
u

i
(

αuσα |u|α−2
(

1 + iβ tan
(πα

2

)
sgn(u)

)
+ iµ

)
exp

(
|uσ|α

(
−1− iβ tan

(πα

2

)
sgn(u)

)
+ iu(K − µ)

)
du

with explicit solutions:

E(α, β, 0, σ, 0) = −σ
1

πα
Γ
(
− 1

α

)((
1 + iβ tan

(πα

2

))1/α
+
(

1− iβ tan
(πα

2

))1/α
)

.

(6.3)

Our formulation in Equation 6.3 generalizes and simplifies the commonly used
one from Wolfe [122] from which Hardin [55] got the explicit form, promoted in
Samorodnitsky and Taqqu [98] and Zolotarev[125]:

E(|X|) =
1
π

σ

(
2Γ
(

1− 1
α

)
(

β2 tan2
(πα

2

)
+ 1
) 1

2α cos

(
tan−1 (β tan

(
πα
2
))

α

))
Which allows us to prove the following statements:
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6.3 class of stable distributions

Relative convergence The general case with β 6= 0: for so and so, assuming so and
so, (precisions) etc.,

nβ
α = 2

α
1−α π

α
2−2α

(
Γ
(

α − 1
α

)
√

ng

((
1− iβ tan

(πα

2

)) 1
α

+
(

1+ iβ tan
(πα

2

)) 1
α

))
α

α−1

(6.4)

with alternative expression:

nβ
α = π

α
2−2α

 sec2 (πα
2
)− 1

2

/
α sec

(
tan−1(tan( πα

2 ))
α

)
√ng Γ

(
α−1

α

)


α
1−α

(6.5)

Which in the symmetric case β = 0 reduces to:

nα = π
α

2(1−α)

 1
√ng Γ

(
α−1

α

)
 α

1−α

(6.6)

Speed of convergence ∀k ∈N+ and α ∈ (1, 2]

E

(∣∣∣∣∣knα

∑
Xα

i −mα

nα

∣∣∣∣∣
)
/E

(∣∣∣∣ nα

∑
Xα

i −mα

nα

∣∣∣∣) = k
1
α−1 (6.7)

Table 13 shows the equivalence of summands between processes.

α = 5 /4

α = 3 /2

α = 7 /4

-1.0 -0.5 0.5 1.0
β
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3.0

3.5

(|X|)

Figure 6.3: Asymmetries and Mean Deviation.
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Table 13: Corresponding nα, or how many for equivalent α-stable distribution. The Gaussian
case is the α = 2. For the case with equivalent tails to the 80/20 one needs 1011 more data
than the Gaussian.

α nα nβ=± 1
2

α nβ=±1
α

1 Fughedaboudit - -

9
8 6.09× 1012 2.8× 1013 1.86× 1014

5
4 574,634 895,952 1.88× 106

11
8 5,027 6,002 8,632

3
2 567 613 737

13
8 165 171 186

7
4 75 77 79

15
8 44 44 44

2 30. 30 30

Remark 6.1.
The ratio mean deviation of distributions in S is homogeneous of degree k

1
. α−1. This is not

the case for other classes "nonstable".

Proof. (Sketch) From the characteristic function of the stable distribution. Other
distributions need to converge to the basin S.

6.3.2 Stochastic Alpha or Mixed Samples

Define mixed population Xα and ξ(Xα) as the mean deviation of ...

Proposition 6.1.
For so and so

ξ(Xᾱ) ≥
m

∑
i=1

ωiξ(Xαi )

where ᾱ = ∑m
i=1 ωiαi and ∑m

i=1 ωi = 1.
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6.4 symmetric nonstable distributions in the subexponential class
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Figure 6.4: Mixing distributions: the effect is pronounced at lower values of α, as tail uncer-
tainty creates more fat-tailedness.

Proof. A sketch for now: ∀α ∈ (1, 2), where γ is the Euler-Mascheroni constant
≈ 0.5772, ψ(1) the first derivative of the Poly Gamma function ψ(x) = Γ′[x]/Γ[x],
and Hn the nth harmonic number:

∂2ξ

∂α2 =
2σΓ
πα4

(
α − 1

α

)
n

1
α−1

(
ψ(1)

(
α − 1

α

)
+
(
−H− 1

α
+ log(n) + γ

) (
2α − H− 1

α
+ log(n) + γ

))
which is positive for values in the specified range, keeping α < 2 as it would no
longer converge to the Stable basin.

Which is also negative with respect to alpha as can be seen in Figure 6.4. The
implication is that one’s sample underestimates the required "n". (Commentary).

6.4 symmetric nonstable distributions in the subex-
ponential class

6.4.1 Symmetric Mixed Gaussians, Stochastic Mean

While mixing Gaussians the kurtosis rises, which makes it convenient to simulate
fattailedness. But mixing means has the opposite effect, as if it were more "stabiliz-
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ing". We can observe a similar effect of "thin-tailedness" as far as the n required to
match the standard benchmark. The situation is the result of multimodality, noting
that stable distributions are unimodal (Ibragimov and Chernin) [60] and infinitely

divisible Wolfe [123]. For Xi Gaussian with mean µ, E = µ erf
(

µ√
2σ

)
+
√

2
π σe−

µ2

2σ2 ,
and keeping the average µ± δ with probability 1/2 each. With the perfectly sym-
metric case µ = 0 and sampling with equal probability:

1
2

(E+δ + E−δ) =

σe−
δ2

2σ2

√
2π

+
1
2

δerf
(

δ√
2σ

) erf

 e−
δ2

2σ2

√
π

+
δerf

(
δ√
2σ

)
√

2σ



+
σ√
2π

exp

−
(√

2
π σe−

δ2

2σ2 + δerf
(

δ√
2σ

))2

2σ2



6.4.2 Half cubic Student T (Lévy Stable Basin)

Relative convergence:

Theorem 6.1.
For all so and so, (details), etc.

c1 ≤
E
(∣∣∣∑kn Xα

i −mα

nα

∣∣∣)
E
(∣∣∣∑n Xα

i −mα

nα

∣∣∣) ≤ c2 (6.8)

where:
c1 = k

1
α−1

c2 = 27/2π1/2
(
−Γ
(
−1

4

))−2

Note that because the instability of distribution outside the basin, they end up
converging to SMin(α,2), so at k = 2, n = 1, equation 6.8 becomes an equality and
k→ ∞ we satisfy the equalities in ?? and 6.7.

Proof. (Sketch)
The characteristic function for α = 3

2 :

Ψ(t) =
33/8 |t|3/4 K 3

4

(√
3
2 |t|

)
8
√

2Γ
( 3

4
)

Leading to convoluted density p2 for a sum n = 2:

p2(x) =
Γ
( 5

4
)

2F1

(
5
4 , 2; 7

4 ;− 2x2

3

)
√

3Γ
( 3

4
)2

Γ
( 7

4
)

146



6.4 symmetric nonstable distributions in the subexponential class
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Figure 6.5: Different Speed: the fatter tailed processes are not just more uncertain; they also
converge more slowly.

6.4.3 Cubic Student T (Gaussian Basin)

Student T with 3 degrees of freedom (higher exponent resembles Gaussian). We
can get a semi-explicit density for the Cubic Student T.

p(x) =
6
√

3

π (x2 + 3)2
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we have:
ϕ(t) = E[eitX] = (1 +

√
3 |t|) e−

√
3 |t|

hence the n-summed characteristic function is:

ϕ(t) = (1 +
√

3|t|)n e−n
√

3 |t|

and the pdf of Y is given by:

p(x) =
1
π

∫ +∞

0
(1 +
√

3 t)n e−n
√

3 t cos(tx) dt

using ∫ ∞

0
tke−t cos(st) dt =

T1+k(1/
√

1 + s2)k!
(1 + s2)(k+1)/2

where Ta(x) is the T-Chebyshev polynomial,2 the pdf p(x) can be writen:

p(x) =

(
n2 + x2

3

)−n−1

√
3π

n

∑
k=0

(
n!
(

n2 + x2

3

) 1−k
2 +n

)
Tk+1

 1√
x2

3n2 +1


(n − k)!

which allows explicit solutions for specific values of n, not not for the general form:

{En}1 ≤n<∞ =

{
2
√

3
π

,
3
√

3
2π

,
34

9
√

3π
,

71
√

3
64π

,
3138
√

3
3125π

,
899

324
√

3π
,

710162
√

3
823543π

,

425331
√

3
524288π

,
33082034

14348907
√

3π
,

5719087
√

3
7812500π

}

2 With thanks to Abe Nassen and Jack D’Aurizio on Math Stack Exchange.
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6.5 asymmetric nonstable distributions in the subexponetial class
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Figure 6.6: Student T with exponent =3. This applies to the general class of symmetric power
law distributions.

6.5 asymmetric nonstable distributions in the subex-
ponetial class

6.5.1 One-tailed Pareto Distributions

6.5.2 The Lognormal and Borderline Subexponential Class

6.6 asymmetric distributions in the superexponen-
tial class

6.6.1 Mixing Gaussian Distributions and Poisson Case

6.6.2 Skew Normal Distribution

This is the most untractable case mathematically, apparently though the most present
when we discuss fat tails [124].
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Figure 6.7: Sum of bets converge rapidly to Gaussian bassin but remain clearly subgaussian
for small samples.
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Figure 6.8: For asymmetric binary bets, at small values of p, convergence is slower.

6.6.3 Super-thin tailed distributions: Subgaussians

Consider a sum of Bernoulli variables X. The average ∑n ≡ ∑i≤n xi follows a
Binomial Distribution. Assuming np ∈N+ to simplify:

E (|Σn|) = −2 ∑
i≤0≤np

(x− np) px
(

n
x

)
(1− p)n−x
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E
(
|Σn|

)
= −2(1− p)n(−p)+n−2 pnp+1Γ(np + 2)(

(p − 1)
(

n
np + 1

)
λ1 − p(np + 2)

(
n

np + 2

)
λ2

)
where:

λ1 =2 F̃1

(
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p
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)
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λ2 =2 F̃1

(
2, n(p− 1) + 2; np + 3;

p
p− 1

)
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appendix: methodology, proofs, etc.

6.7.1 Derivations using explicit E(|X|)

See Wolfe [122] from which Hardin got the explicit form[55].

6.7.2 Derivations using the Hilbert Transform and β = 0

Section obsolete since I found forms for asymmetric stable distributions. Some
commentary on Hilbert transforms for symmetric stable distributions, given that
for Z = |X|, dFz(z) = dFX(x)(1− sgn(x)), that type of thing.

Hilbert Transform for a function f (see Hlusel, [57], Pinelis [87]):

H( f ) =
1
π

p.v.
∫ ∞

−∞

f (x)
t− x

dx

Here p.v. means principal value in the Cauchy sense, in other words

p.v.
∫ ∞

−∞
= lim

a→∞
lim
b→0

∫ −b

−a
+
∫ a

b

E(|X|) =
∂

∂t
H(Ψ(0)) =

1
π

∂

∂t
p.v.

∫ ∞

−∞

Ψ(z)
t− z

dz|t=0

E(|X|) =
1
π

p.v.
∫ ∞

−∞

Ψ(z)
z2 dz

In our case:

E(|X|) =
1
π

p.v.
∫ ∞

−∞
− e−|tσ|

α

t2 dt =
2
π

Γ
(

α− 1
α

)
σ

151





D I N P R O G R E S S D E R I VAT I O N S
F O R L L N A C R O S S FAT TA I L S

d.1 comments on lln and bounds

Recall from Chapter 3 that the quality of an estimator is tied to its replicability
outside the set in which it was derived: this is the basis of the law of large numbers
which deals with the limiting behavior of relative frequencies.

(Hint: we will need to look at the limit without the common route of Chebychev’s
inequality which requires E[X2

i ] < ∞ . Chebychev’s inequality and similar ones
eliminate the probabilities of some tail events).

So long as there is a mean, observations should at some point reveal it.

The law of iterated logarithms For the “thin-tailed” conditions, we can see in
Figure x how by the law of iterated logarithm, for xi i.i.d. distributed with mean

0 and unitary variance, lim sup
n→∞

∑n
i=1 xi√

2n log log(n)
= 1 a.s. (and by symmetry lim in f

n→∞
∑n

i=1 xi√
2n log log(n)

= -1), thus giving us an acceptably narrow cone limiting the fluctuation

of the sum.

Chernoff Bounds For very, very thin tails, that is variations that are either fixed
(binary such as in a Bernouilli) or hard bound to a maximum and a minimum, the
tightest bound we can find is the Chernoff. See discussion section x.

d.1.1 Speed of Convergence for Simple Cases

Let us examine the speed of convergence of the average 1
N ∑1≤i≤N Xi. For a

Gaussian distribution (m, σ), the characteristic function for the convolution is:

ϕ(t/N)N =
(

e
imt
N −

s2t2

2N2

)N

,

which, derived twice at 0 yields (−i)2 ∂2c
∂t2 −i ∂c

∂t /. t→ 0 which produces the standard

deviation σ(n) = σ(1)√
N

so one can say that sum “converges” at a speed
√

N.
Another approach consists in expanding ϕ and letting N go to infinity

lim
N→∞

(
e

imt
N −

s2t2

2N2

)N

= eimt

Now eimt is the characteristic function of the degenerate distribution at m, with
density p(x) = δ(m − x) where δ is the Dirac delta with values zero except at the
point m− x. (Note that the strong law of large numbers implies that convergence
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in progress derivations for lln across fat tails

takes place almost everywhere except for a set of probability 0; for that the same
result should be obtained for all values of t).

But things are far more complicated with power laws. Let us repeat the exercise
for a Pareto distribution with density Lαx−1−αα , x> L,

ϕ(t/N)N = αN Eα+1

(
− iLt

N

)
N ,

where E is the exponential integral E; En(z) =
∫ ∞

1 e−zt/tndt.
At the limit:

lim
N→∞

ϕ

(
t
N

)N
= e

α
α−1 iLt,

which is degenerate Dirac at α
α−1 L, and as we can see the limit only exists for α >1.

Setting L = 1 to scale, the standard deviation σα(N) for the N-average becomes,
for α >2

σα(N) =
1
N

(
αN Eα+1(0)N−2

(
Eα−1(0)Eα+1(0) + Eα(0)2

(
−NαN Eα+1(0)N + N − 1

)))
.

The trap After some tinkering, we get σα(N) = σα(1)√
N

, the same as with the Gaussian,
which is a trap. For we should be careful in interpreting σα(N), which will be
very volatile since σα(1) is already very volatile and does not reveal itself easily in
realizations of the process. In fact, let p(.) be the PDF of a Pareto distribution with
mean m, variance v, minimum value L and exponent α.

Infinite variance of variance The distribution of the variance, v can be obtained
analytically: intuitively its asymptotic tail is v−

α
2−1. Where g(.) is the probability

density of the variance:

g(v) =
αLα

(√
α

α−2 L
α−1 +

√
v
)−α−1

2
√

v

with support:[(L−
√

α
α−2 L

α−1 )2, ∞).
Cleaner: ∆α the expected mean deviation of the variance for a given α will be

∆α = 1
v
∫ ∞

L

∣∣(x−m)2 − v
∣∣ p(x)dx.

Absence of Useful Theory: As to situations, central situations, where 1< α <2, we
are left hanging analytically (but we can do something about it in the next section).
We will return to the problem in our treatment of the preasymptotics of the central
limit theorem.
But we saw in ??.?? that the volatility of the mean is α

α−1 s and the mean deviation of
the mean deviation, that is, the volatility of the volatility of mean is 2(α− 1)α−2α1−αs
, where s is the scale of the distribution. As we get close to α = 1 the mean becomes
more and more volatile in realizations for a given scale. This is not trivial since we
are not interested in the speed of convergence per se given a variance, rather the
ability of a sample to deliver a meaningful estimate of some total properties.
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d.1 comments on lln and bounds
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Figure D.1: The distribution (histogram) of the standard deviation of the sum of N=100

α=13/6. The second graph shows the entire span of realizations. If it appears to shows
very little information in the middle, it is because the plot is stretched to accommodate the
extreme observation on the far right.

Intuitively, the law of large numbers needs an infinite observations to converge
at α=1. So, if it ever works, it would operate at a >20 times slower rate for
an “observed” α of 1.15 than for an exponent of 3. To make up for measurement
errors on the α, as a rough heuristic, just assume that one needs > 400 times the
observations. Indeed, 400 times! (The point of what we mean by “rate” will be
revisited with the discussion of the Large Deviation Principle and the Cramer rate
function in X.x; we need a bit more refinement of the idea of tail exposure for the
sum of random variables).

d.1.2 Comparing N = 1 to N = 2 for a symmetric power law with 1< α ≤2.

Let φ(t) be the characteristic function of the symmetric Student T with α degrees of
freedom. After two-fold convolution of the average we get:

φ(t/2)2 =
41−ααα/2 |t|α K α

2

(√
α|t|
2

)2

Γ
(

α
2
)2 ,

We can get an explicit density by inverse Fourier transform of φ,

p2,α(x) =
1

2π

∫ ∞

−∞
φ(t/2)2−i t x dt,

which yields the following

p2,α(x) =
π 2−4α α5/2Γ(2α) 2F1

(
α + 1

2 , α+1
2 ; α+2

2 ;− x2

α

)
Γ
(

α
2 + 1

)4

where 2F1is the hypergeometric function:

2F1(a, b; c; z) =
∞

∑
k=0

(a)k(b)k/(c)k zk
/

k!

We can compare the twice-summed density to the initial one (with notation:
pN(x)= P(∑N

i=1 xi=x))
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in progress derivations for lln across fat tails
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Figure D.2: Preasymptotics of the ra-
tio of mean deviations for a symmet-
ric power law (Student). But one
should note that mean deviations
themselves are extremely high in the
neighborhood of ↓1. So we have a
“sort of” double convergence to

√
n :

convergence at higher n and conver-
gence at higher α.

The double effect of summing fat tailed random variables: The summation
of random variables performs two simultaneous actions, one, the “thinning” of
the tails by the CLT for a finite variance distribution (or convergence to some
basin of attraction for infinite variance classes); and the other, the lowering of
the dispersion by the LLN. Both effects are fast under thinner tails, and slow
under fat tails. But there is a third effect: the dispersion of observations for
n=1 is itself much higher under fat tails. Fatter tails for power laws come with
higher expected mean deviation.

p1,α(x) =

(
α

α+x2

) α+1
2

√
αB
(

α
2 , 1

2

)
From there, we see that in the Cauchy case (α=1) the sum conserves the density,

so
p1,1(x) = p2,1(x) =

1
π (1 + x2)

Let us use the ratio of mean deviations; since the mean is 0,

µ(α) ≡
∫
|x|p2,α(x)dx∫
|x|p1,α(x)dx

µ(α) =

√
π 21−α Γ

(
α− 1

2

)
Γ
(

α
2
)2

and
lim

α→∞
µ(α) =

1√
2
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d.2 digression into inversion of characteristic function of nonstable power law

d.2 digression into inversion of characteristic func-
tion of nonstable power law

The Characteristic function of the Student T with α degrees of freedom, C(t) =
21− α

2 αα/4|t|α/2K α
2
(
√

α|t|)
Γ( α

2 )
entails a modified Bessel function of the second kind Kα/2

(√
α |t|

)
.

To invert the Fourier to get the probability density of the n-summed variable when
α is not an integer poses problem as the equation below seems integrable otherwise.
Of particular interest is the distribution for α = 3/2 ("halfcubic"). With n an integer
( n > 2):

fn(x) =

(
33/8

8
√

2 Γ
( 3

4
))n ∫ ∞

−∞
e−i tx |t|

3n
4 K 3

4

(√
3
2
|t|
)n

dt

I tried all manner of expansions and reexpressions of the Bessel into other functions
(Hypergeometric, Gamma) to no avail. One good news is that n = 2 works on
Mathematica because the Wolfram library has the square of a Bessel function. It
would be great to get the solution for at least n = 3.

Take the n-convoluted21− α
2 αα/4

∣∣ t
N

∣∣α/2 K α
2

(√
α
∣∣ t

N

∣∣)
Γ
(

α
2
)

 n

α C(t)

1
(

π
2
)n/2

(
e−t
√

t

)n

5
4 K 5

8

(√
5t

2

)
n

3
2 K 3

4

(√
3
2 t
)

n

7
4 K 7

8

(√
7t

2

)
n

2 K1

(√
2t
)

n

9
4 K 9

8

( 3t
2
) n

5
2 K 5

4

(√
5
2 t
)

n

11
4 K 11

8

(√
11t
2

)
n

3 3−5n/4 (π
2
)n/2

(
e−
√

3t(3t+
√

3)
t3/2

)n
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d.2.1 Integrable Characteristic Functions

α Student T Pareto

1 e−tsgn(t) E2(−iLt)

5
4

55/16|t|5/8K 5
8

(√
5|t|
2

)
4√2Γ( 5

8 )
5
4 E 9

4
(−iLt)

3
2

33/8|t|3/4K 3
4

(√
3
2 |t|
)

8√2Γ( 3
4 )

3
2 E 5

2
(−iLt)

7
4

77/16|t|7/8K 7
8

(√
7|t|
2

)
23/4Γ( 7

8 )
7
4 E 11

4
(−iLt)

2
√

2 |t|K1

(√
2 |t|

)
2E3(−iLt)

9
4

6 23/4 8√3|t|9/8K 9
8

(
3|t|
2

)
Γ( 1

8 )
9
4 E 13

4
(−iLt)

5
2

55/8|t|5/4K 5
4

(√
5
2 |t|
)

27/8Γ( 5
4 )

5
2 E 7

2
(−iLt)

11
4

1111/16|t|11/8K 11
8

(√
11|t|
2

)
2 23/4Γ( 11

8 )
11
4 E 15

4
(−iLt)

3 e−
√

3|t|
(√

3 |t| + 1
)

3E4(−iLt)

d.3 pulling the pdf of an n-summed student t

p(x) =
6
√

3

π (x2 + 3)2

we have:
ϕ(t) = E[eitX] = (1 +

√
3 |t|) e−

√
3 |t|

hence the n-summed characteristic function is:

ϕ(t) = (1 +
√

3|t|)n e−n
√

3 |t|

and the pdf of Y is given by:

fY(x) =
1

2π

∫ +∞

−∞
(1 +
√

3 |t|)n e−n
√

3 |t|e−itx dt =
1
π

∫ +∞

0
(1 +
√

3 t)n e−n
√

3 t cos(tx) dt

One can expand with the Newton formula

(1 +
√

3t)n =
n

∑
k=0

(
n
k

)
(
√

3t)k

then the integrals can be performed using

∫ ∞

0
tke−t cos(st) dt =

T1+k(1/
√

1 + s2)k!
(1 + s2)(k+1)/2
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d.3 pulling the pdf of an n-summed student t

where Ta(x) is the T-Chebyshev polynomial. Then, the given sequence can be rewrit-
ten setting s = x/

√
3 as1

Sn =
6
√

3
(
n2 + s2)−n−1

π18

n

∑
k=0

n!
(n− k)!

(
n2 + s2

) 1−k
2 +n

Tk+1

 1√
s2

n2 + 1



1 with thanks to Abe Nassen and Jack D’Aurizio on Math Stack Exchange.
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7 P R E A S Y M P TOT I C S A N D C E N T R A L
L I M I T I N T H E R E A L W O R L D

Chapter Summary 7: The behavior of the sum of random variables allows
us to get to the asymptote and use handy asymptotic properties, that is,
Platonic distributions. But the problem is that in the real world we never
get to the asymptote, we just get "close" Some distributions get close quickly,
others very slowly (even if they have finite variance). We examine how fat
tailedness worsens the process.

An intuition: how we converge mostly in the center of the distribution

We start with the Uniform Distribution, patently the easiest of all.

f (x ) = {
1

H−L L ≤ x ≤ H
0 elsewhere

where L = 0 and H =1

A random run from a Uniform Distribution
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preasymptotics and central limit in the real world

The functioning of CLT is as follows: the convolution is a multiplication; it
is the equivalent of weighting the probability distribution by a function that
iteratively gives more weight to the body, and less weight to the tails, until it
becomes round enough to dull the iterative effect. See how "multiplying" a flat
distribution by something triangular as in Figure 7 produces more rounded-
ness.

0.5 1 1.5 2 2.5

200

400

600

800

As we can see, we get more
observations where the peak is higher. Now some math. By convoluting 2, 3, 4

times we can see the progress and the decrease of mass in the tails:

f2 (z2 ) =
∫ ∞

−∞
( f (z − x ))( f x ) dx =

{
2 − z2 1 < z2 < 2
z2 0 < z2 ≤ 1

(7.1)

We have a triangle (piecewise linear).

f3 (z3 ) =
∫ 3

0
( f2 (z3 − 2)) f (x2 ) dx2 =


z2

3
2 0 < z3 ≤ 1
−(z3 − 3)z3 − 3

2 1 < z3 < 2
− 1

2 (z3 − 3)(z3 − 1) z3 = 2
1
2 (z3 − 3)2 2 < z3 < 3

(7.2)

With N = 3 we square terms, and the familiar "bell" shape starts to emerge
thanks to such squaring.

f4 x =
∫ 4

0
( f3 (z4 − x ))( f x3) dx3 =



1
4 z4 = 3
1
2 z4 = 2
z2

4
4 0 < z4 ≤ 1
1
4
(
−z2

4 + 4z4 − 2
)

1 < z4 < 2 ∨ 2 < z4 < 3
1
4 (z4 − 4)2 3 < z4 < 4

(7.3)

A simple Uniform Distribution
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We can see how quickly, after one single addition, the net probabilistic “weight”
is going to be skewed to the center of the distribution, and the vector will weight
future densities..
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preasymptotics and central limit in the real world

Finite Variance: Necessary but Not Sufficient

The common mistake is to think that if we satisfy the criteria of convergence, that is,
independence and finite variance, that central limit is a given.Take the conventional
formulation of the Central Limit Theorem 1:

Let X1 , X2 ,... be a sequence of independent identically distributed random
variables with mean m & variance σ2 satisfying m< ∞ and 0 < σ2< ∞, then

∑ N
i=1 X i − N m

σ
√

n
D→ N (0, 1)as n → ∞

Where D→ is converges “in distribution” and N(0,1) is the Gaussian with mean 0

and unit standard deviation.
Granted convergence “in distribution” is about the weakest form of convergence.

Effectively we are dealing with a double problem.
The first, as uncovered by Jaynes, corresponds to the abuses of measure theory:
Some properties that hold at infinity might not hold in all limiting processes .

There is a large difference between convergence a.s. (almost surely) and the
weaker forms.

Jaynes 2003 (p.44):“The danger is that the present measure theory notation pre-
supposes the infinite limit already accomplished, but contains no symbol indicating
which limiting process was used (...) Any attempt to go directly to the limit can
result in nonsense”.

We accord with him on this point –along with his definition of probability as
information incompleteness, about which later.

The second problem is that we do not have a “clean” limiting process –the
process is itself idealized.

Now how should we look at the Central Limit Theorem? Let us see how we
arrive to it assuming “independence”.

The Kolmogorov-Lyapunov Approach and Convergence in the Body 2 The CLT
works does not fill-in uniformily, but in a Gaussian way −indeed, disturbingly so.
Simply, whatever your distribution (assuming one mode), your sample is going to
be skewed to deliver more central observations, and fewer tail events. The conse-
quence is that, under aggregation, the sum of these variables will converge “much”
faster in theπ body of the distribution than in the tails. As N, the number of obser-
vations increases, the Gaussian zone should cover more grounds... but not in the
“tails”.

This quick note shows the intuition of the convergence and presents the differ-
ence between distributions.

Take the sum of of random independent variables X i with finite variance un-
der distribution ϕ(X). Assume 0 mean for simplicity (and symmetry, absence of
skewness to simplify).

A more useful formulation is the Kolmogorov or what we can call "Russian"
approach of working with bounds:

1 Feller 1971, Vol. II
2 See Loeve for a presentation of the method of truncation used by Kolmogorov in the early days before

Lyapunov started using characteristic functions.
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preasymptotics and central limit in the real world

Figure 7.1: Q-Q Plot of N Sums of variables
distributed according to the Student T with 3

degrees of freedom, N=50, compared to the
Gaussian, rescaled into standard deviations.
We see on both sides a higher incidence of tail
events. 106simulations

Figure 7.2: The Widening Center. Q-Q Plot
of variables distributed according to the Stu-
dent T with 3 degrees of freedom compared
to the Gaussian, rescaled into standard devi-
ation, N=500. We see on both sides a higher
incidence of tail events. 107simulations.

P
(
−u ≤ Z =

∑n
i=0 X i√

nσ
≤ u

)
=

∫ u
−u e−

Z2
2 dZ

√
2π

So the distribution is going to be:(
1 −

∫ u

−u
e−

Z2
2 dZ

)
, for − u ≤ z ≤ u

inside the “tunnel” [-u,u] –the odds of falling inside the tunnel itself,
and ∫ u

−∞
Z ϕ ′ ( N )dz +

∫ ∞

u
Z ϕ ′ ( N )dz

outside the tunnel, in [−u , u],where ϕ ′ ( N ) is the n-summed distribution of ϕ.
How ϕ ′ ( N ) behaves is a bit interesting here –it is distribution dependent.

Before continuing, let us check the speed of convergence per distribution. It
is quite interesting that we the ratio of observations in a given sub-segment of the
distribution is in proportion to the expected frequency N u

−u
N ∞
−∞

where N u
−u , is the

numbers of observations falling between -u and u. So the speed of convergence to
the Gaussian will depend on N u

−u
N ∞
−∞

as can be seen in the next two simulations.
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preasymptotics and central limit in the real world

2000 4000 6000 8000 10 000

N

u

Figure 7.3: The behavior of the "tun-
nel" under summation

To have an idea of the speed of the widening of the tunnel (−u, u) under summa-
tion, consider the symmetric (0-centered) Student T with tail exponent α= 3, with
density 2a3

π(a2+x2)
2 , and variance a2. For large “tail values” of x, P(x) → 2a3

πx4 . Under

summation of N variables, the tail P(Σx) will be 2Na3

πx4 . Now the center, by the Kol-
mogorov version of the central limit theorem, will have a variance of Na2 in the
center as well, hence

P(Σ x) =
e−

x2

2a2 N
√

2πa
√

N

Setting the point u where the crossover takes place,

e−
x2

2aN
√

2πa
√

N
' 2Na3

πx4 ,

hence u4e−
u2

2aN '
√

22a3
√

aNN√
π

, which produces the solution

±u = ±2a
√

N

√
−W

(
− 1

2N1/4(2π)1/4

)
,

where W is the Lambert W function or product log which climbs very slowly3,
particularly if instead of considering the sum u we rescaled by 1/a

√
N.

Note about the crossover See the competing Nagaev brothers, s.a. S.V. Nagaev(1965,1970,1971,1973),
and A.V. Nagaev(1969) etc. There are two sets of inequalities, one lower one below
which the sum is in regime 1 (thin-tailed behavior), an upper one for the fat tailed
behavior, where the cumulative function for the sum behaves likes the maximum .
By Nagaev (1965) For a regularly varying tail, where E (|X|m ) < ∞ the minimum

of the crossover should be to the left of
√(m

2 − 1
)

N log(N) (normalizing for unit

3 Interestingly, among the authors on the paper on the Lambert W function figures Donald Knuth: Corless,
R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., Knuth, D. E. (1996). On the LambertW function.
Advances in Computational mathematics, 5(1), 329-359.
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7.1 using log cumulants to observe preasymptotics

variance) for the right tail (and with the proper sign adjustment for the left tail).
So

P
>

N
∑ Xi

P> X√
N

→ 1

for [NOT] 0 ≤ x ≤
√(m

2 − 1
)

N log(N)

Generalizing for all exponents > 2 More generally, using the reasoning for a
broader set and getting the crossover for powelaws of all exponents:

4
√

(α− 2)αe−
√

α−2
α x2

2aN
√

2π
√

aαN
'

aα
(

1
x2

) 1+α
2

αα/2

Beta
[

α
2 , 1

2 , ]

since the standard deviation is a
√

α
−2+α

x → ±
√
± a α (α + 1) N W(λ)√

(α− 2) α

Where

λ = −
(2π)

1
α+1

√
α−2

α

(
4√α−2α

− α
2−

1
4 a−α− 1

2 B( α
2 , 1

2 )√
N

)− 2
α+1

a (α + 1) N

7.1 using log cumulants to observe preasymptotics
The normalized cumulant of order n, n is the derivative of the log of the character-
istic function Φ which we convolute N times divided by the second cumulant (i,e.,
second moment).

This exercise show us how fast an aggregate of N-summed variables become
Gaussian, looking at how quickly the 4th cumulant approaches 0. For instance the
Poisson get there at a speed that depends inversely on Λ, that is, 1/(N2Λ3), while
by contrast an exponential distribution reaches it at a slower rate at higher values
of Λ since the cumulant is (3! Λ2)/N2.

Speed of Convergence of the Summed distribution using Edgeworth Expansions
A twinking of Feller (1971), Vol II by replacing the derivatives with our cumulants.
Let fN(z) be the normalized sum of the i.i.d. distributed random variables Ξ=
{ξi}1<i≤N with variance σ2 , z ≡ Σξi−E(Ξ)

σ and φ0,σ(z) the standard Gaussian with
mean 0, then the convoluted sum approaches the Gaussian as follows assuming
E (Ξp) < ∞ ,i.e., the moments of Ξ of ≤ p exist:

z fN − zφ0,σ=

(
zφ0,σ

)p−2

∑
s

s

∑
r

σs (zH2r+s)
(

Ys,r

{
κk

(k−1)kσ2k−2

}
p
k=3

)
(√

2σ
) (

s! 2r+ s
2

) + 1
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preasymptotics and central limit in the real world

Table 14: Table of Normalized Cumulants For Thin Tailed Distributions-Speed of Conver-
gence (Dividing by Σn where n is the order of the cumulant).

Distr. Normal(µ, σ) Poisson(λ ) Exponent’l(λ) Γ(a, b)

PDF e
− (x−µ)2

2σ2√
2πσ

e−λλx

x! e^-x λλ b−ae−
x
b xa−1

Γ(a)

N-
convoluted
Log
Charac-
teristic

N log
(

eizµ− z2σ2
2

)
N log

(
e(−1+eiz)λ

)
N log

(
λ

λ−iz

)
N log ((1− ibz)−a)

2 nd Cu-
mulant

1 1 1 1

3 rd
0

1
Nλ

2λ
N

2
a b N

4 th
0

1
N2λ2

3!λ2

N2
3!

a2 b2 N2

6 th
0

1
N4λ4

5!λ4

N4
5!

a4b4 N4

8 th
0

1
N6λ6

7!λ6

N6
7!

a6b6 N6
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where κkis the cumulant of order k. Yn,k (x1, . . . , x−k+n+1) is the partial Bell poly-
nomial given by

Yn,k (x1, . . . , x−k+n+1) ≡
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∑
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7.1 using log cumulants to observe preasymptotics

Notes on Levy Stability and the Generalized Cental Limit Theorem

Take for now that the distribution that concerves under summation (that is, stays
the same) is said to be "stable". You add Gaussians and get Gaussians. But if you
add binomials, you end up with a Gaussian, or, more accurately, "converge to the
Gaussian basin of attraction". These distributions are not called "unstable" but they
are.

There is a more general class of convergence. Just consider that the Cauchy
variables converges to Cauchy, so the “stability’ has to apply to an entire class of
distributions.

Although these lectures are not about mathematical techniques, but about the
real world, it is worth developing some results converning stable distribution in or-
der to prove some results relative to the effect of skewness and tails on the stability.
Let n be a positive integer, n ≥2 and X1, X2, ..., Xn satisfy some measure of inde-
pendence and are drawn from the same distribution,
i) there exist c n ∈ R+ and d n ∈ R+ such that

n

∑
i=1

Xi
D= cnX + dn

where D= means “equality” in distribution.
ii) or, equivalently, there exist sequence of i.i.d random variables {Yi}, a real posi-
tive sequence {di} and a real sequence {ai} such that

1
dn

n

∑
i=1

Yi + an
D→ X

where D→ means convergence in distribution.
iii) or, equivalently,

The distribution of X has for characteristic function

φ(t) =

{
exp(iµt− σ |t| (1 + 2iβ/πsgn(t) log(|t|))) α = 1
exp

(
iµt− |tσ|α

(
1− iβ tan

(
πα
2
)

sgn(t)
))

α 6= 1
.

α ∈(0,2] σ ∈ R+, β ∈[-1,1], µ ∈ R

Then if either of i), ii), iii) holds, X has the “alpha stable” distribution S(α, β, µ, σ),
with β designating the symmetry, µ the centrality, and σ the scale.

Warning: perturbating the skewness of the Levy stable distribution by changing
β without affecting the tail exponent is mean preserving, which we will see is
unnatural: the transformation of random variables leads to effects on more than
one characteristic of the distribution. S(α, β, µ, σ)represents the stable distribution
Stype with index of stability α, skewness parameter β, location parameter µ, and
scale parameter σ.

The Generalized Central Limit Theorem gives sequences an and bn such that
the distribution of the shifted and rescaled sum Zn = (∑n

i Xi − an) /bn of n i.i.d.
random variates Xi whose distribution function FX(x) has asymptotes 1 − cx−µ
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preasymptotics and central limit in the real world
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Figure 7.4: Disturbing the scale of the alpha stable and that of a more natural distribution, the
gamma distribution. The alpha stable does not increase in risks! (risks for us in Chapter x is
defined in thickening of the tails of the distribution). We will see later with “convexification”
how it is rare to have an isolated perturbation of distribution without an increase in risks.

as x-> + ∞ and d(−x)−µ as x-> −∞ weakly converges to the stable distribution
S1(α, (c− d)/(c + d), 0, 1):

Note: Chebyshev’s Inequality and upper bound on deviations under fi-
nite variance. [To ADD MARKOV BOUNDS −→ CHEBYCHEV −→ CHERNOV
BOUNDS.]

Even when the variance is finite, the bound is rather far. Consider Chebyshev’s
inequality:

P(X > α) ≤ σ2

α2

P(X > nσ) ≤ 1
n2 ,

which effectively accommodate power laws but puts a bound on the probability
distribution of large deviations –but still significant.

The Effect of Finiteness of Variance
This table shows the inverse of the probability of exceeding a certain σ for the

Gaussian and the lower on probability limit for any distribution with finite variance.

Deviation
3 Gaussian
7.× 102 ChebyshevUpperBound
9
4 3.× 104 16
5 3.× 106 25
6 1.× 109 36
7 8.× 1011 49
8 2.× 1015 64
9 9.× 1018 81
10 1.× 1023 100
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7.2 convergence of the maximum of a finite variance power law

7.2 convergence of the maximum of a finite vari-
ance power law

An illustration of the following point. The behavior of the maximum value as
a percentage of a sum is much slower than we think, and doesn’t make much
difference on whether it is a finite variance, that is α >2 or not. (See comments in
Mandelbrot & Taleb, 2011)

τ(N) ≡ E ()

Α=1.8

Α=2.4

2000 4000 6000 8000 10 000

N

0.01

0.02

0.03

0.04

0.05

Max�Sum

7.3 sources and further readings

Limits of Sums

Paul Lévy [68], Gnedenko and Kolmogorov [51], Prokhorov [92], [91], Hoeffding[58],
Petrov[86], Blum[12].

For Large Deviations

Nagaev[81], [80], Mikosch and Nagaev[77], Nagaev and Pinelis [82]. In the absence
of Cramér conditions, Nagaev [79], Brennan[16], Ramsay[93], Bennet[9].

Also, for dependent summands, Bernstein [10].

Discussions of Concentration functions Esseen [36], [? ], Doeblin [26], [25], Dar-
ling [21], Kolmogorov [66], Rogozin [94], Kesten [63], Rogogin [95].
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preasymptotics and central limit in the real world

7.4 convergence for non-lévy stablepower laws
temporarily here)

The Characteristic function of the Student T with α degrees of freedom, C(t) =
21− α

2 αα/4|t|α/2K α
2
(
√

α|t|)
Γ( α

2 )
entails a modified Bessel function of the second kind Kα/2

(√
α |t|

)
.

To invert the Fourier to get the probability density of the n-summed variable when
α is not an integer ∈ Z poses problem as K α

2
seems integrable otherwise. Of partic-

ular interest is the distribution for α = 3/2. With n integer > 1:

fn(x) =

(
33/8

8
√

2 Γ
( 3

4
))n ∫ ∞

−∞
e−i tx |t|3n/4 K 3

4

(√
3
2
|t|
)n

dt

I tried all manner of expansions and reexpressions of the Bessel into other functions
(Hypergeometric, Gamma) to no avail. One good news is that n = 2 works on
Mathematica because the Wolfram library has the square of a Bessel function. It
would be great to get the solution for at least n = 3.

α StudentT Pareto(1, α)
1 e−tsgn(t) E2(−iLt)
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(√
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)
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(−iLt)

3
2

33/8|t|3/4K 3
4

(√
3
2 |t|
)

8√2Γ( 3
4 )

3
2 E 5

2
(−iLt)

7
4

77/16|t|7/8K 7
8

(√
7|t|
2

)
23/4Γ( 7

8 )
7
4 E 11

4
(−iLt)

2
√

2 |t|K1

(√
2 |t|

)
2E3(−iLt)

9
4

6 23/4 8√3|t|9/8K 9
8

(
3|t|
2

)
Γ( 1

8 )
9
4 E 13

4
(−iLt)

5
2

55/8|t|5/4K 5
4

(√
5
2 |t|
)

27/8Γ( 5
4 )

5
2 E 7

2
(−iLt)

11
4

1111/16|t|11/8K 11
8

(√
11|t|
2

)
2 23/4Γ( 11

8 )
11
4 E 15

4
(−iLt)

3 e−
√

3|t|
(√

3 |t| + 1
)

3E4(−iLt)

172



7.4 convergence for non-lévy stablepower laws temporarily here)
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Figure 7.5: Convergence for summed Student T -3
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E W H E R E S TA N DA R D
D I V E R S I F I C AT I O N FA I L S

U
Overerestimation
of diversification

Underestimation
of risk

Markowitz

Real World

20 40 60 80 100
Number of Assets

Risk

Figure E.1: The "diversification effect": difference between promised and delivered.
Markowitz Mean Variance based portfolio construction will stand probably as one of the
most empirically invalid theory ever used in modern times.

This is an analog of the problem with slowness of the law of large number: how
a portfolio can track a general index (speed of convergence) and how high can true
volatility be compared to the observed one (the base line).

Model Structure under Markowitz Mean Variance Historically, Modern Portfolio
Theory (MPT), as a normative theory of risk bearing, has made the central assump-
tion that, for a set return, the investor rationally minimizes the variance of his
exposure, defined as the mean square variability (or, which was proven by MPT to
be equivalent to maximizing the mean conditional on a set variance). The standard
models, Markowitz (1952, 1959) [75] [76], and the extensions such as Treynor(1965)
[116] and Sharpe (1966)[102], all base their criterion on minimum variance. [See
Constantinides and Malliaris (1995)[20], Elton and Gruber (1997)[30] for a survey,
Huang and Litzenberger (1988)[59] for an analytical discussion. Distributional
Condition: The agent is supposed to have full grasp of the probability distribution
with all the joint returns known and deemed to be Gaussian. Further, no error rate
is allowed. Utility Condition: The agent is supposed to have a utility function
that allows optimization via minimum variance, as the agent cares only about the
first two moments of the distribution. So, conveniently, under quadratic utility of
wealth, U(W) ≡ aW − bW2, where W is wealth, a random variable, the expected
wealth E (U(W)) = aE(W)− bE(W2) does not depent on higher orders of the ran-
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where standard diversification fails

dom variable and allows therefore the maximization of E(W)
V(W) without recomputing

utilities for every state. (The same reasoning applies to the situation where in place
of focusing on W the wealth, we focus on the return or relative changes in wealth,
∆W
W ).

Difficulty Knowing the Exact Structure of Returns The first difficulty arises in the
presence of unknown structure to the future states of the world, as the MPT models
are based on perfect, error-free knowledge of the probability distribution of future
returns and its parameter, with constraints that the distribution should have specific
properties. In the case of the exposure being a portfolio of assets, hence requiring
the use of the standard classes of multivariate probability distributions, there are
additional errors that grown nonlinearly with the number of assets (the nonlinearity
of the covariance matrix): the investor would now need to estimate the correlation
structure as well as all future returns. In order to implement a full Markowitz-
style optimization, one needs to know the entire joint probability distribution of all
assets for the entire future, plus the exact utility function for wealth at all future
times -all that without errors. Estimation errors make the system highly unreliable,
as small changes in parameters lead to extremely varying effects on the "optimal"
allocation. The second difficulty lies in the specificity of the probability distribution,
namely the reliance on the sufficiency of the first two moments in the formulation
of preferences, and the neglect of higher moments of the payoffs, which, ironically
necessitates models having all moments finite. "Exploding" higher moments lead
to theoretical incompatibilities. Assuming finite variance, but infinite kurtosis (say
a power law with tail exponent <4) results in the inability of the mean-variance
equations to hold owing to the presence of incompressible higher order terms. It
is not just that variance is not a good proxy for risk, it is that it is a bad one
for variability –it has been shown that mean deviation, for instance, does a vastly
better job out of sample. The first two difficulties we just exposed are empirical, not
normative or logical (that is, in a world that is normally distributed with known
probability distributions, assuming these exist, the problems would not arise); the
next one is normative. So the third, and most severe difficulty is in the following
incompatibility: the aim by MPT at lowering variance (for a given expected return)
is inconsistent with the preferences of a rational investor, regardless of his risk
aversion, since it also minimizes the variability in the profit domain. Minimum
variance is indeed fundamentally incompatible with theoretically established risk
preferences, see Arrow (1965, 1971)[2] [3] , Pratt (1964) [90], Machina and Rothchild
(1987, 2008)[73] [74], except in the far-fetched case where the investor can only
invest in symmetric probability distributions —and only under such assumption
of symmetry. In other words, the idea of "risk" = variance necessitates symmetry
between the profit and loss domain. If one assumes, realistically, that variance is a
poor proxy for risk, constraining it for all states of the world becomes inconsistent
with a rational portfolio strategy.

Mitigation via Assumption of Elliptical Distributions One may broaden the dis-
tribution to include elliptical distributions is that they do not map the return of
stocks, owing to the absence of a single variance at any point in time, see Bouchaud
and Chicheportiche (2010) [18]. See discussion in 3.17 of the "other fat tail" in the
failure of ellipticity owing to unstable correlation structure.
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where standard diversification fails

Difficulty With the Utility Structure There are problems with the utility structure
and such risk aversion, as, once one fattens the left tail of the distribution, the
concavity of the losses causes a severe degradation of expected utility. Quadratic
utility is chosen to reverse engineer mean-variance and ignore higher moments even
if these exist and are meaningful. Exponential utility can allow mean variance, but
then under Gaussian distribution as the tails get heavily discounted. But absence
of Gaussian outside of quadratic produces pathological expected utility returns in
the presence of concavity (i.e., acceleration) in losses.

The distribution of the utility of losses can be captured by transforming the dis-
tribution. Take as an example the standard concave utility function g(x) = 1− e−ax.
With a=1, the distribution of v(x) will be

v(x) = − e−
(µ+log(1−x))2

2σ2

√
2πσ(x− 1)

With a fatter tailed distribution, such as the a standard powerlaw used in finance
(Gabaix, 2008,[47]), where α is the tail exponent,

v(x) =

x

(
α

(log(1−x)−1)2

a2 +α

) α+1
2

√
α(a− ax)B

(
α
2 , 1

2

)
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We can see With such a distribution of utility it would be absurd to do anything.
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F FAT TA I L S A N D R A N D O M
M AT R I C E S

[The equivalent of fat tails for matrices. This will be completed, but consider for
now that the 4th moment reaching Gaussian levels (i.e. 3) in the chapter is equiva-
lent to eigenvalues reaching Wigner’s semicircle. ]
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Figure F.1: Gaussian
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fat tails and random matrices
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8 S O M E M I S U S E S O F S TAT I S T I C S I N
S O C I A L S C I E N C E

Chapter Summary 8: We apply the results of the previous chapter on the
slowness of the LLN and list misapplication of statistics in social science,
almost all of them linked to misinterpretation of the effects of fat-tailedness
(and often from lack of awareness of fat tails), and how by attribute substi-
tution researchers can substitute one measure for another. Why for example,
because of chronic small-sample effects, the 80/20 is milder in-sample (less
fat-tailed) than in reality and why regression rarely works.

8.1 mechanistic statistical statements
Recall from the Introduction that the best way to figure out if someone is using an
erroneous statistical technique is to use such technique on a dataset for which you
have the answer. The best way to know the exact properties is to generate it by
Monte Carlo. So the technique throughout the chapter is to generate fat-tailed data,
the properties of which we know with precision, and check how such standard
and mechanistic methods detect the true properties, then show the wedge between
observed and true properties.

Also recall from Chapter 6 (D.1) that fat tails make it harder for someone to
detect the true properties; for this we need a much, much larger dataset, more rig-
orous ranking techniques allowing inference in one direction not another ( Chapter
4), etc. Hence this chapter is a direct application of the results and rules of Chapter
4.

8.2 attribute substitution
Attribute substitution occurs when an individual has to make a judgment (of a
target attribute) that is complicated complex, and instead substitutes a more eas-
ily calculated one. There have been many papers (Kahneman and Tversky [118] ,
Hoggarth and Soyer, [104] and comment [107]) showing how statistical researchers
overinterpret their own findings, as simplication leads to the fooled by randomness
effect.

Dan Goldstein and this author (Goldstein and Taleb [53]) showed how profes-
sional researchers and practitioners substitute norms in the evaluation of higher

order properties of time series, mistaking ‖x‖1 for ‖x‖2 (or 1
n ∑|x| for

√
∑ x2

n ). The
common result is underestimating the randomness of the estimator M, in other
words read too much into it (and, what is worse, underestimation of the tails, since,

as we saw in 3.4, the ratio
√

∑ x2

∑|x| increases with "fat-tailedness" to become infinite
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some misuses of statistics in social science

The Small n Problem One often hears the statement "n = 1", or, worse, "the
plural of anecdote is not data", a very, very representative (but elementary)
violation of probability theory. It is very severe in effect for risk taking. For
large deviations, n = 1 is plenty of data. To rule out large deviations, n = 106

can be small (as we saw with the law of large numbers under fat tails). Sample
size should be a nonlinear proportion of the violation. The Chebychev distance,
or norm L∞ focuses on the largest measure (also see concentration functions,
maximum of divergence (Lévy, Petrov), or even the standard and ubiquitous
Kolmogorov-Smirnoff): looking at the extremum of a time series is not cherry
picking since it is disconfirmatory evidence, the only true evidence one can get
in statistics. Remarkably such people tend to also fall for the opposite mistake,
the "n-large", in thinking that confirmatory observations provide "p-values".
All these errors are magnified by fat tails.a b

a In addition to Paul Lévy and, of course, the Russians (see Petrov), there is an interesting literature
on concentration functions, mostly in Italian (to wit, Gini): Finetti, Bruno (1953) : Sulla nozione
di "dispersione" per distribuzioni a piu dimensioni, de Unione Roma. Gini, corrado (1914) : Sulla
misura delia concentrazione delia variabilita dei caratteri. Atti del Reale Istituto Veneto di S. L. A.,
A. A. 1913-1914, 78, parte II, 1203-1248. Atti IV Edizioni- Congresso Cremonese,: La Matematica
Italiana in (Taormina, 25-31 Ott. 1951), 587-596, astratto Giornale qualsiasi, (1955) deiristituto delle
distribuzioni 18, 15-28. insieme translation in : de Finetti, Bruno struttura degli Attuari (1972).

b In ecology there is an interesting comedy of errors with the Séralini affair by which a collection
of scientists (with some involvement from the firm Monsanto that has an evident track record
of using lobbyists and a new breed of lobbyist-scientist) managed to get a safety-testing paper
retracted from a journal (though subsequently republished in another one), allegedly because the
claims made off small samples –although the samples were not particularly small compared to
similar papers that were positive towards GMOs, and what is worse, the sample does not have
to be particularly large for risk functions as the left tail grows with skepticism. The problem
illustrates the failure to understand that disconfirmatory empiricism requires a different "n" than
confirmatory ones.

under tail exponents α ≥ 2). Standard deviation is ususally explained and inter-
preted as mean deviation. Simply, people find it easier to imagine that a variation
of, say, (-5,+10,-4,-3, 5, 8) in temperature over successive day needs to be mentally
estimated by squaring the numbers, averaging them, then taking square roots. In-
stead they just average the absolutes. But, what is key, they tend to do so while
convincing themselves that they are using standard deviations.

There is worse. Mindless application of statistical techniques, without knowl-
edge of the conditional nature of the claims are widespread. But mistakes are often
elementary, like lectures by parrots repeating "N of 1" or "p", or "do you have ev-
idence of?", etc. Many social scientists need to have a clear idea of the difference
between science and journalism, or the one between rigorous empiricism and anec-
dotal statements. Science is not about making claims about a sample, but using a
sample to make general claims and discuss properties that apply outside the sam-
ple.

Take M’ (short for MX
T (A, f )) the estimator we saw above from the realizations

(a sample path) for some process, and M* the "true" mean that would emanate from
knowledge of the generating process for such variable. When someone announces:
"The crime rate in NYC dropped between 2000 and 2010", the claim is limited M’
the observed mean, not M∗ the true mean, hence the claim can be deemed merely
journalistic, not scientific, and journalists are there to report "facts" not theories.
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8.3 the tails sampling property
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Figure 8.1: Q-Q plot" Fitting extreme
value theory to data generated by
its own process , the rest of course
owing to sample insuficiency for ex-
tremely large values, a bias that typ-
ically causes the underestimation of
tails, as the reader can see the points
tending to fall to the right.

No scientific and causal statement should be made from M’ on "why violence has
dropped" unless one establishes a link to M* the true mean. M cannot be deemed
"evidence" by itself. Working with M’ alone cannot be called "empiricism".

What we just saw is at the foundation of statistics (and, it looks like, science).
Bayesians disagree on how M’ converges to M*, etc., never on this point. From his
statements in a dispute with this author concerning his claims about the stability
of modern times based on the mean casualy in the past (Pinker [88]), Pinker seems
to be aware that M’ may have dropped over time (which is a straight equality) and
sort of perhaps we might not be able to make claims on M* which might not have
really been dropping.

In some areas not involving time series, the differnce between M’ and M* is
negligible. So I rapidly jot down a few rules before showing proofs and derivations
(limiting M’ to the arithmetic mean, that is, M’= MX

T ((−∞, ∞), x)).

Note again that E is the expectation operator under "real-world" probability
measure P.

8.3 the tails sampling property

From the derivations in D.1, E[| M’- M*|] increases in with fat-tailedness (the
mean deviation of M* seen from the realizations in different samples of the
same process). In other words, fat tails tend to mask the distributional proper-
ties. This is the immediate result of the problem of convergence by the law of
large numbers.

On the difference between the initial (generator) and the "recovered" distribution

(Explanation of the method of generating data from a known distribution and com-
paring realized outcomes to expected ones)
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some misuses of statistics in social science
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Figure 8.2: First 100 years
(Sample Path): A Monte
Carlo generated realiza-
tion of a process for ca-
sualties from violent con-
flict of the "80/20 or 80/02
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α= 1.15

TimeHYearsL

200 000

400 000

600 000

800 000

1.0´ 10
6

1.2´ 10
6

1.4´ 10
6

CasualtiesH000L

Figure 8.3: The Turkey
Surprise: Now 200 years,
the second 100 years
dwarf the first; these are
realizations of the exact
same process, seen with a
longer window and at a
different scale.

Case Study: "Long Peace" Type Claims On The Stability of the Future Based on Past
Data

When the generating process is power law with low exponent, plenty of confusion
can take place.

For instance, Pinker [88] claims that the generating process has a tail exponent
∼1.16 but made the mistake of drawing quantitative conclusions from it about the
mean from M’ and built theories about drop in the risk of violence that is contradicted by
the data he was showing, since fat tails plus negative skewness/asymmetry= hid-
den and underestimated risks of blowup. His study is also missing the Casanova
problem (next point) but let us focus on the error of being fooled by the mean of
fat-tailed data.

Figures 8.2 and 8.3 show the realizations of two subsamples, one before, and the
other after the turkey problem, illustrating the inability of a set to naively deliver
true probabilities through calm periods.

The next simulations shows M1, the mean of casualties over the first 100 years
across 104sample paths, and M2 the mean of casualties over the next 100 years.

So clearly it is a lunacy to try to read much into the mean of a power law with 1.15

exponent (and this is the mild case, where we know the exponent is 1.15. Typically
we have an error rate, and the metaprobability discussion in Chapter x will show
the exponent to be likely to be lower because of the possibility of error).

184
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Figure 8.4: Does the past mean pre-
dict the future mean? Not so. M1

for 100 years,M2 for the next century.
Seen at a narrow scale.
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Figure 8.5: Does the past mean pre-
dict the future mean? Not so. M1

for 100 years,M2 for the next century.
Seen at a wider scale.
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Figure 8.6: The same seen with a
thin-tailed distribution.
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Figure 8.7: Cederman 2003, used by Pinker [88] . I wonder if I am dreaming or if the
exponent α is really = .41. Chapters x and x show why such inference is centrally flawed,
since low exponents do not allow claims on mean of the variableexcept to say that it is very, very
high and not observable in finite samples. Also, in addition to wrong conclusions from the
data, take for now that the regression fits the small deviations, not the large ones, and that
the author overestimates our ability to figure out the asymptotic slope.

Claims Made From Power Laws

The Cederman graph, Figure 8.7 shows exactly how not to make claims upon
observing power laws.

8.4 a discussion of the paretan 80/20 rule
Next we will see how when one hears about the Paretan 80/20 "rule" (or, worse,
"principle"), it is likely to underestimate the fat tails effect outside some narrow
domains. It can be more like 95/20 or even 99.9999/.0001, or eventually 100/ε. Al-
most all economic reports applying power laws for "GINI" (Chapter x) or inequality
miss the point. Even Pareto himself miscalibrated the rule.

As a heuristic, it is always best to assume underestimation of tail measurement.
Recall that we are in a one-tailed situation, hence a likely underestimation of the
mean.
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8.4 a discussion of the paretan 80/20 rule

Where does this 80/20 business come from? Assume α the power law tail expo-
nent, and an exceedant probability PX>x = xmin x−α, x ∈(xmin, ∞). Simply, the top
p of the population gets S = p

α−1
α of the share of the total pie.

α =
log(p)

log(p)− log(S)

which means that the exponent will be 1.161 for the 80/20 distribution.

Note that as α gets close to 1 the contribution explodes as it becomes close to
infinite mean.

Derivation: Start with the standard density f (x) = xα
minα x−α−1, x ≥ xmin.

1) The Share attributed above K, K ≥ xmin, becomes∫ ∞
K x f (x) dx∫ ∞

xmin
x f (x) dx

= K1−α

2) The probability of exceeding K,∫ ∞

K
f (x)dx = K−α

3) Hence K−α of the population contributes K1−α=p
α−1

α of the result

Why the 80/20 Will Be Generally an Error: The Problem of In-Sample Calibration

Vilfredo Pareto figured out that 20% of the land in Italy was owned by 80% of
the people, and the reverse. He later observed that 20 percent of the peapods in
his garden yielded 80 percent of the peas that were harvested. He might have been
right about the peas; but most certainly wrong about the land.

For fitting in-sample frequencies for a power law does not yield the proper "true"
ratio since the sample is likely to be insufficient. One should fit a powerlaw us-
ing extrapolative, not interpolative techniques, such as methods based on Log-Log
plotting or regressions. These latter methods are more informational, though with
a few caveats as they can also suffer from sample insufficiency.

Data with infinite mean, α ≤1, will masquerade as finite variance in sample and
show about 80% contribution to the top 20% quantile. In fact you are expected to
witness in finite samples a lower contribution of the top 20%/
Let us see: Figure 8.8. Generate m samples of α =1 data Xj=(xi,j)n

i=1 , ordered xi,j≥
xi−1,j, and examine the distribution of the top ν contribution Zν

j = ∑i≤νn xj
∑i≤n xj

, with ν ∈
(0,1).
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Figure 8.8: The difference betwen the generated (ex ante) and recovered (ex post) processes;
ν = 20/100, N = 107. Even when it should be 100/.0001, we tend to watch an average of
75/20

8.5 survivorship bias (casanova) property

E(M′ − M∗) increases under the presence of an absorbing barrier for the process.
This is the Casanova effect, or fallacy of silent evidence see The Black Swan, Chapter
8. ( Fallacy of silent evidence: Looking at history, we do not see the full story, only
the rosier parts of the process, in the Glossary)

History is a single sample path we can model as a Brownian motion, or some-
thing similar with fat tails (say Levy flights). What we observe is one path among
many "counterfactuals", or alternative histories. Let us call each one a "sample
path", a succession of discretely observed states of the system between the initial
state S0 and ST the present state.

Arithmetic process: We can model it as S(t) = S(t− ∆t) + Z∆t where Z∆t is noise
drawn from any distribution.

Geometric process: We can model it as S(t) = S(t−∆t)eWt typically S(t−∆t)eµ∆t+s
√

∆tZt

but Wt can be noise drawn from any distribution. Typically, log
(

S(t)
S(t−i∆t)

)
is treated

as Gaussian, but we can use fatter tails. The convenience of the Gaussian is stochas-
tic calculus and the ability to skip steps in the process, as S(t)=S(t-∆t)eµ∆t+s

√
∆tWt ,

with Wt ∼N(0,1), works for all ∆t, even allowing for a single period to summarize
the total.

The Black Swan made the statement that history is more rosy than the "true"
history, that is, the mean of the ensemble of all sample path.

Take an absorbing barrier H as a level that, when reached, leads to extinction,
defined as becoming unobservable or unobserved at period T.

When you observe history of a family of processes subjected to an absorbing
barrier, i.e., you see the winners not the losers, there are biases. If the survival
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Figure 8.9: Counterfactual historical
paths subjected to an absorbing bar-
rier.

Figure 8.10: The reflection principle
(graph from Taleb, 1997). The num-
ber of paths that go from point a to
point b without hitting the barrier H
is equivalent to the number of path
from the point - a (equidistant to the
barrier) to b.

of the entity depends upon not hitting the barrier, then one cannot compute the
probabilities along a certain sample path, without adjusting.

Begin The "true" distribution is the one for all sample paths, the "observed" dis-
tribution is the one of the succession of points (Si∆t)T

i=1.

Bias in the measurement of the mean In the presence of an absorbing barrier H
"below", that is, lower than S0, the "observed mean" > "true mean"

Bias in the measurement of the volatility The "observed" variance (or mean devi-
ation) 6 "true" variance

The first two results are well known (see Brown, Goetzman and Ross (1995)).
What I will set to prove here is that fat-tailedness increases the bias.

First, let us pull out the "true" distribution using the reflection principle.
Thus if the barrier is H and we start at S0then we have two distributions, one

f(S), the other f(S-2( S0-H))
By the reflection principle, the "observed" distribution p(S) becomes:

p(S) =

{
f (S)− f (S− 2 (S0 − H)) if S > H
0 if S < H

Simply, the nonobserved paths (the casualties "swallowed into the bowels of his-
tory") represent a mass of 1-

∫ ∞
H f (S)− f (S− 2 (S0 − H)) dS and, clearly, it is in this

mass that all the hidden effects reside. We can prove that the missing mean is
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Observed Distribution

H

 Absorbed Paths

Figure 8.11: If you don’t take
into account the sample paths
that hit the barrier, the observed
distribution seems more posi-
tive, and more stable, than the
"true" one.
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Unseen rare events

Figure 8.12: The left tail has fewer
samples. The probability of an event
falling below K in n samples is F(K),
where F is the cumulative distribu-
tion.

∫ H
∞ S ( f (S)− f (S− 2 (S0 − H))) dS and perturbate f (S) using the previously seen

method to "fatten" the tail.

The interest aspect of the absorbing barrier (from below) is that it has the same
effect as insufficient sampling of a left-skewed distribution under fat tails. The
mean will look better than it really is.

8.6 left (right) tail sample insufficiency under
negative (positive) skewness

E[ M’- M*] increases (decreases) with negative (positive) skeweness of the true un-
derying variable.

Some classes of payoff (those affected by Turkey problems) show better perfor-
mance than "true" mean. Others (entrepreneurship) are plagued with in-sample
underestimation of the mean. A naive measure of a sample mean, even without
absorbing barrier, yields a higher oberved mean than "true" mean when the distri-
bution is skewed to the left, and lower when the skewness is to the right.

This can be shown analytically, but a simulation works well.
To see how a distribution masks its mean because of sample insufficiency, take

a skewed distribution with fat tails, say the standard Pareto Distribution we saw
earlier.

The "true" mean is known to be m= α
α−1 . Generate a sequence (X1,j, X2,j, ...,XN,j)

of random samples indexed by j as a designator of a certain history j. Measure
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8.7 why n=1 can be very, very significant statistically
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Figure 8.13: Median of ∑T
j=1

µj
MT in

simulations (106 Monte Carlo runs).
We can observe the underestimation
of the mean of a skewed power law
distribution as α exponent gets lower.
Note that lower values of α imply fat-
ter tails.

µj = ∑N
i=1 Xi,j

N . We end up with the sequence of various sample means
(
µj
)T

j=1, which
naturally should converge to M with both N and T. Next we calculate µ̃ the median
value of ∑T

j=1
µj

M∗T , such that P>µ̃ = 1
2 where, to repeat, M* is the theoretical mean

we expect from the generating distribution.
Entrepreneurship is penalized by right tail insufficiency making performance

look worse than it is. Figures 0.1 and 0.2 can be seen in a symmetrical way, produc-
ing the exact opposite effect of negative skewness.

8.7 why n=1 can be very, very significant statis-
tically

The Power of Extreme Deviations: Under fat tails, large deviations from the mean
are vastly more informational than small ones. They are not "anecdotal". (The last
two properties corresponds to the black swan problem, inherently asymmetric).

We saw the point earlier (with the masquerade problem) in ??.??. The gist is as
follows, worth repeating and applying to this context.

A thin-tailed distribution is less likely to deliver a single large deviation than
a fat tailed distribution a series of long calm periods. Now add negative skewness
to the issue, which makes large deviations negative and small deviations positive,
and a large negative deviation, under skewness, becomes extremely informational.

Mixing the arguments of ??.?? and ??.?? we get:

Asymmetry in Inference: Under both negative [positive] skewness and fat
tails, negative [positive] deviations from the mean are more informational than
positive [negative] deviations.

8.8 the instability of squared variations in regres-
sions

Probing the limits of a standardized method by arbitrage. We can easily arbitrage
a mechanistic method of analysis by generating data, the properties of which are
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The big deviation
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x
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yHxL Figure 8.14: A sample regression
path dominated by a large deviation.
Most samples don’t exhibit such de-
viation this, which is a problem. We
know that with certainty (an applica-
tion of the zero-one laws) that these
deviations are certain as n → ∞ , so
if one pick an arbitrarily large devia-
tion, such number will be exceeded,
with a result that can be illustrated as
the sum of all variations will come
from a single large deviation.

known by us, which we call "true" properties, and comparing these "true" properties
to the properties revealed by analyses, as well as the confidence of the analysis
about its own results in the form of "p-values" or other masquerades.
This is no different from generating random noise and asking the "specialist" for an
analysis of the charts, in order to test his knowledge, and, even more importantly,
asking him to give us a probability of his analysis being wrong. Likewise, this is
equivalent to providing a literary commentator with randomly generated giberish
and asking him to provide comments. In this section we apply the technique to
regression analyses, a great subject of abuse by the social scientists, particularly
when ignoring the effects of fat tails.

In short, we saw the effect of fat tails on higher moments. We will start with 1) an
extreme case of infinite mean (in which we know that the conventional regression
analyses break down), then generalize to 2) situations with finite mean (but finite
variance), then 3) finite variance but infinite higher moments. Note that except for
case 3, these results are "sort of" standard in the econometrics literature, except that
they are ignored away through tweaking of the assumptions.

Fooled by α=1 Assume the simplest possible regression model, as follows. Let
yi= β0 + β1 xi + s zi, with Y=(yi)1<i≤n the set of n dependent variables and X=
(xi)1<i≤n, the independent one; Y, X ε R, i ε N. The errors zi are independent but
drawn from a standard Cauchy (symmetric, with tail exponent α =1), multiplied
by the amplitude or scale s; we will vary s across the thought experiment (recall
that in the absence and variance and mean deviation we rely on s as a measure
of dispersion). Since all moments are infinite, E[zn

i ] = ∞ for all n≥1, we know ex
ante that the noise is such that the "errors" or ’residuals" have infinite means and
variances –but the problem is that in finite samples the property doesn’t show. The
sum of squares will be finite.

The next figure shows the effect of a very expected large deviation, as can be
expected from a Cauchy jump.

Next we generate T simulations (indexed by j) of n pairs (yi, xi)1<i≤n for increas-
ing values of x, thanks to Cauchy distributed variables variable zα

i,j and multiplied
zα

i,j by the scaling constant s, leaving us with a sequence

((
β0 + β1xi + szα

i,j

)n

i=1

)T

j=1
.
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0.2 0.4 0.6 0.8 1.0
R

20.0

0.1

0.2

0.3

0.4

Pr

Α = 1; s = 5

Figure 8.15: The histograms show-
ing the distribution of R Squares; T =
106 simulations.The "true" R-Square
should be 0. High scale of noise.
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Figure 8.16: The histograms show-
ing the distribution of R Squares; T =
106 simulations.The "true" R-Square
should be 0. Low scale of noise.

Using standard regression techniques of estimation we "regress" and obtain the
standard equation Yest = βest

0 + Xβest
1 , where Yest is the estimated Y, and E a vector

of unexplained residuals E≡
(
εi,j
)
≡
((

yest
i,j − βest

0 − βest
1 xi j

)n

i=1

)T

j=1
. We thus obtain

T simulated values of ρ ≡
(
ρj
)T

j=1, where ρj≡1- ∑n
i=1 εi,j

2

∑n
i=1(yi,j−yj)2 , the R-square for a

sample run j, where yj= 1
n ∑n

i=1 yi,j, in other words 1- ( squared residuals) / (squared
variations). We examine the distribution of the different realizations of ρ.

Arbitraging metrics For a sample run which, typically, will not have a large devi-
ation,

R-squared: 0.994813 (When the "true" R-squared would be 0)
The P-values are monstrously misleading.

Estimate Std Error T-Statistic P-Value

1 4.99 0.417 11.976 7.8× 10−33

x 0.10 0.00007224 1384.68 9.3× 10−11426

Application to Economic Variables

We saw in G.G that kurtosis can be attributable to 1 in 10,000 observations (>50

years of data), meaning it is unrigorous to assume anything other than that the
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Figure 8.17: We can fit different re-
gressions to the same story (which is
no story). A regression that tries to
accommodate the large deviation.
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Figure 8.18: Missing the largest de-
viation (not necessarily voluntarily):
the sample doesn’t include the criti-
cal observation.

data has "infinite" kurtosis. The implication is that even if the squares exist, i.e.,
E[z2

i ] < ∞, the distribution of z2
i has infinite variance, and is massively unstable.

The "P-values" remain grossly miscomputed. The next graph shows the distribution
of ρ across samples.
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Figure 8.19: Finite variance but infi-
nite kurtosis.

194



8.9 statistical testing of differences between variables

8.9 statistical testing of differences between vari-
ables

A pervasive attribute substitution: Where X and Y are two random variables, the
properties of X-Y, say the variance, probabilities, and higher order attributes are
markedly different from the difference in properties. So E (X−Y) = E(X)−E(Y)
but of course, Var(X − Y) 6= Var(X)− Var(Y), etc. for higher norms. It means that
P-values are different, and of course the coefficient of variation ("Sharpe"). Where
σ is the Standard deviation of the variable (or sample):

E(X−Y)
σ(X−Y)

6= E(X)
σ(X)

− E(Y))
σ(Y)

In Fooled by Randomness (2001):

A far more acute problem relates to the outperformance, or the compar-
ison, between two or more persons or entities. While we are certainly
fooled by randomness when it comes to a single times series, the fool-
ishness is compounded when it comes to the comparison between, say,
two people, or a person and a benchmark. Why? Because both are
random. Let us do the following simple thought experiment. Take two
individuals, say, a person and his brother-in-law, launched through life.
Assume equal odds for each of good and bad luck. Outcomes: lucky-
lucky (no difference between them), unlucky-unlucky (again, no differ-
ence), lucky- unlucky (a large difference between them), unlucky-lucky
(again, a large difference).

Ten years later (2011) it was found that 50% of neuroscience papers (peer-reviewed
in "prestigious journals") that compared variables got it wrong.

In theory, a comparison of two experimental effects requires a statistical
test on their difference. In practice, this comparison is often based on an
incorrect procedure involving two separate tests in which researchers
conclude that effects differ when one effect is significant (P < 0.05) but
the other is not (P > 0.05). We reviewed 513 behavioral, systems and
cognitive neuroscience articles in five top-ranking journals (Science, Na-
ture, Nature Neuroscience, Neuron and The Journal of Neuroscience)
and found that 78 used the correct procedure and 79 used the incor-
rect procedure. An additional analysis suggests that incorrect analyses
of interactions are even more common in cellular and molecular neuro-
science.

In Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E. J. (2011). Erroneous
analyses of interactions in neuroscience: a problem of significance. Nature neuro-
science, 14(9), 1105-1107.

Fooled by Randomness was read by many professionals (to put it mildly); the mis-
take is still being made. Ten years from now, they will still be making the mistake.
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8.10 studying the statistical properties of bina-
ries and extending to vanillas

See discussion in Chapter ??. A lot of nonsense in discussions of rationality facing
"dread risk" (such as terrorism or nuclear events) based on wrong probabilistic
structures, such as comparisons of fatalities from falls from ladders to death from
terrorism. The probability of falls from ladder doubling is 1 1020. Terrorism is
fat-tailed: similar claims cannot be made.

A lot of unrigorous claims like "long shot bias" is also discussed there.

8.11 why economics time series don’t replicate

(Debunking a Nasty Type of Misinference)
Something Wrong With Econometrics, as Almost All Papers Don’t Replicate.

The next two reliability tests, one about parametric methods the other about robust
statistics, show that there is something wrong in econometric methods, fundamen-
tally wrong, and that the methods are not dependable enough to be of use in
anything remotely related to risky decisions.

Performance of Standard Parametric Risk Estimators, f (x) = xn (Norm L2)

With economic variables one single observation in 10,000, that is, one single day in
40 years, can explain the bulk of the "kurtosis", a measure of "fat tails", that is, both a
measure how much the distribution under consideration departs from the standard
Gaussian, or the role of remote events in determining the total properties. For the
U.S. stock market, a single day, the crash of 1987, determined 80% of the kurtosis.
The same problem is found with interest and exchange rates, commodities, and
other variables. The problem is not just that the data had "fat tails", something
people knew but sort of wanted to forget; it was that we would never be able to
determine "how fat" the tails were within standard methods. Never.

The implication is that those tools used in economics that are based on squaring
variables (more technically, the Euclidian, or L2 norm), such as standard deviation,
variance, correlation, regression, the kind of stuff you find in textbooks, are not
valid scientifically(except in some rare cases where the variable is bounded). The so-
called "p values" you find in studies have no meaning with economic and financial
variables. Even the more sophisticated techniques of stochastic calculus used in
mathematical finance do not work in economics except in selected pockets.

The results of most papers in economics based on these standard statistical meth-
ods are thus not expected to replicate, and they effectively don’t. Further, these
tools invite foolish risk taking. Neither do alternative techniques yield reliable
measures of rare events, except that we can tell if a remote event is underpriced,
without assigning an exact value.

From [109]), using Log returns, Xt ≡ log
(

P(t)
P(t−i∆t)

)
, take the measure MX

t
(
(−∞, ∞), X4)

of the fourth noncentral moment:
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MX
t

(
(−∞, ∞), X4

)
≡ 1

n

n

∑
i=0

X4
t−i∆t

and the n-sample maximum quartic observation Max(Xt−i∆t
4)n

i=0. Q(n) is the
contribution of the maximum quartic variations over n samples.

Q(n) ≡
Max

(
X4

t−∆ti)
n
i=0

∑n
i=0 X4

t−∆ti

For a Gaussian (i.e., the distribution of the square of a Chi-square distributed
variable) show Q

(
104) the maximum contribution should be around .008 ± .0028.

Visibly we can see that the distribution 4th moment has the property

P
(

X > max(x4
i )i≤2≤n

)
≈ P

(
X >

n

∑
i=1

x4
i

)

Recall that, naively, the fourth moment expresses the stability of the second mo-
ment. And the second moment expresses the stability of the measure across sam-
ples.

Security Max Q Years.
Silver 0.94 46.
SP500 0.79 56.
CrudeOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar #11 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CT 0.25 48.
DAX 0.2 18.

Note that taking the snapshot at a different period would show extremes coming
from other variables while these variables showing high maximma for the kurtosis,
would drop, a mere result of the instability of the measure across series and time.
Description of the dataset:

All tradable macro markets data available as of August 2008, with "tradable"
meaning actual closing prices corresponding to transactions (stemming from mar-
kets not bureaucratic evaluations, includes interest rates, currencies, equity indices).
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Figure 8.20: Max quartic across secu-
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Figure 8.22: Monthly delivered
volatility in the SP500 (as measured
by standard deviations). The only
structure it seems to have comes
from the fact that it is bounded at 0.
This is standard.
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Figure 8.23: Montly volatility of
volatility from the same dataset, pre-
dictably unstable.
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Figure 8.24: Comparing M[t-1,
t] and M[t,t+1], where τ= 1year,
252 days, for macroeconomic
data using extreme deviations,
A = (−∞,−2 STD (equivalent)],
f (x) = x (replication of data from The
Fourth Quadrant, Taleb, 2009)
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Figure 8.25: The "regular" is predic-
tive of the regular, that is mean de-
viation. Comparing M[t] and M[t+1

year] for macroeconomic data using
regular deviations, A= (-∞ ,∞), f(x)=
|x|

Performance of Standard NonParametric Risk Estimators, f(x)= x or |x| (Norm L1), A
=(-∞, K]

Does the past resemble the future in the tails? The following tests are nonparamet-
ric, that is entirely based on empirical probability distributions.

So far we stayed in dimension 1. When we look at higher dimensional properties,
such as covariance matrices, things get worse. We will return to the point with the
treatment of model error in mean-variance optimization.

When xt are now in RN , the problems of sensitivity to changes in the covariance
matrix makes the estimator M extremely unstable. Tail events for a vector are vastly
more difficult to calibrate, and increase in dimensions.

Concentration of tail events

 without predecessors

Concentration of tail events

 without successors

0.0001 0.0002 0.0003 0.0004 0.0005
M@tD

0.0001

0.0002

0.0003

0.0004

M@t+1D

Figure 8.26: The figure shows how
things get a lot worse for large devi-
ations A = (−∞,−4) standard devia-
tions (equivalent), f (x) = x
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some misuses of statistics in social science

Figure 8.27: Correlations are also problematic, which flows from the instability of single
variances and the effect of multiplication of the values of random variables.

The Responses so far by members of the economics/econometrics establishment
: "his books are too popular to merit attention", "nothing new" (sic), "egomaniac"
(but I was told at the National Science Foundation that "egomaniac" does not apper
to have a clear econometric significance). No answer as to why they still use STD,
regressions, GARCH, value-at-risk and similar methods.

Peso problem : Note that many researchers [CITATION] invoke "outliers" or "peso
problem" as acknowledging fat tails, yet ignore them analytically (outside of Pois-
son models that we will see are not possible to calibrate except after the fact). Our
approach here is exactly the opposite: do not push outliers under the rug, rather
build everything around them. In other words, just like the FAA and the FDA
who deal with safety by focusing on catastrophe avoidance, we will throw away
the ordinary under the rug and retain extremes as the sole sound approach to risk
management. And this extends beyond safety since much of the analytics and
policies that can be destroyed by tail events are unusable.

Peso problem confusion about the Black Swan problem :

"(...) "Black Swans" (Taleb, 2007). These cultural icons refer to disasters
that occur so infrequently that they are virtually impossible to analyze
using standard statistical inference. However, we find this perspective
less than helpful because it suggests a state of hopeless ignorance in
which we resign ourselves to being buffeted and battered by the un-
knowable."

(Andrew Lo, who obviously did not bother to read the book he was
citing. The comment also shows the lack of the common sense to look
for robustness to these events instead of just focuing on probability).

200



8.12 a general summary of the problem of reliance on past time series

Lack of skin in the game. Indeed one wonders why econometric methods can
be used while being wrong, so shockingly wrong, how "University" researchers
(adults) can partake of such acts of artistry. Basically these capture the ordinary and
mask higher order effects. Since blowups are not frequent, these events do not show
in data and the researcher looks smart most of the time while being fundamentally
wrong. At the source, researchers, "quant" risk manager, and academic economist
do not have skin in the game so they are not hurt by wrong risk measures: other
people are hurt by them. And the artistry should continue perpetually so long as
people are allowed to harm others with impunity. (More in Taleb and Sandis, 2013)

8.12 a general summary of the problem of reliance
on past time series

The four aspects of what we will call the nonreplicability issue, particularly for
mesures that are in the tails. These are briefly presented here and developed more
technically throughout the book:

a- Definition of statistical rigor (or Pinker Problem). The idea that an estimator
is not about fitness to past data, but related to how it can capture future realizations
of a process seems absent from the discourse. Much of econometrics/risk manage-
ment methods do not meet this simple point and the rigor required by orthodox,
basic statistical theory.

b- Statistical argument on the limit of knowledge of tail events. Problems of
replicability are acute for tail events. Tail events are impossible to price owing to
the limitations from the size of the sample. Naively rare events have little data
hence what estimator we may have is noisier.

c- Mathematical argument about statistical decidability. No probability with-
out metaprobability. Metadistributions matter more with tail events, and with fat-
tailed distributions.

1. The soft problem: we accept the probability distribution, but the imprecision
in the calibration (or parameter errors) percolates in the tails.

2. The hard problem (Taleb and Pilpel, 2001, Taleb and Douady, 2009): We need
to specify an a priori probability distribution from which we depend, or alter-
natively, propose a metadistribution with compact support.

3. Both problems are bridged in that a nested stochastization of standard devi-
ation (or the scale of the parameters) for a Gaussian turn a thin-tailed distri-
bution into a power law (and stochastization that includes the mean turns it
into a jump-diffusion or mixed-Poisson).

d- Economic arguments: The Friedman-Phelps and Lucas critiques, Good-
hart’s law. Acting on statistical information (a metric, a response) changes the
statistical properties of some processes.
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some misuses of statistics in social science

8.13 conclusion
This chapter introduced the problem of "surprises" from the past of time series,
and the invalidity of a certain class of estimators that seem to only work in-sample.
Before examining more deeply the mathematical properties of fat-tails, let us look
at some practical aspects.

202



G O N T H E I N S TA B I L I T Y O F
E C O N O M E T R I C DATA

Table 15: Fourth noncentral moment at daily, 10-day, and 66-day windows for the random
variables

K(1) K(10) K(66)
Max
Quartic

Years

Australian Dol-
lar/USD

6.3 3.8 2.9 0.12 22.

Australia TB 10y 7.5 6.2 3.5 0.08 25.

Australia TB 3y 7.5 5.4 4.2 0.06 21.

BeanOil 5.5 7.0 4.9 0.11 47.

Bonds 30Y 5.6 4.7 3.9 0.02 32.

Bovespa 24.9 5.0 2.3 0.27 16.

British Pound/USD 6.9 7.4 5.3 0.05 38.

CAC40 6.5 4.7 3.6 0.05 20.

Canadian Dollar 7.4 4.1 3.9 0.06 38.

Cocoa NY 4.9 4.0 5.2 0.04 47.

Coffee NY 10.7 5.2 5.3 0.13 37.

Copper 6.4 5.5 4.5 0.05 48.

Corn 9.4 8.0 5.0 0.18 49.

Crude Oil 29.0 4.7 5.1 0.79 26.

CT 7.8 4.8 3.7 0.25 48.

DAX 8.0 6.5 3.7 0.20 18.

Euro Bund 4.9 3.2 3.3 0.06 18.
Euro Currency/DEM
previously

5.5 3.8 2.8 0.06 38.

Eurodollar Depo 1M 41.5 28.0 6.0 0.31 19.

Eurodollar Depo 3M 21.1 8.1 7.0 0.25 28.

FTSE 15.2 27.4 6.5 0.54 25.

Gold 11.9 14.5 16.6 0.04 35.

Heating Oil 20.0 4.1 4.4 0.74 31.

Hogs 4.5 4.6 4.8 0.05 43.

Jakarta Stock Index 40.5 6.2 4.2 0.19 16.

Japanese Gov Bonds 17.2 16.9 4.3 0.48 24.

Live Cattle 4.2 4.9 5.6 0.04 44.
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on the instability of econometric data

Table 15: (continued from previous page)

K(1) K(10) K(66)
Max
Quartic

Years

Nasdaq Index 11.4 9.3 5.0 0.13 21.

Natural Gas 6.0 3.9 3.8 0.06 19.

Nikkei 52.6 4.0 2.9 0.72 23.

Notes 5Y 5.1 3.2 2.5 0.06 21.

Russia RTSI 13.3 6.0 7.3 0.13 17.

Short Sterling 851.8 93.0 3.0 0.75 17.

Silver 160.3 22.6 10.2 0.94 46.

Smallcap 6.1 5.7 6.8 0.06 17.

SoyBeans 7.1 8.8 6.7 0.17 47.

SoyMeal 8.9 9.8 8.5 0.09 48.

Sp500 38.2 7.7 5.1 0.79 56.

Sugar #11 9.4 6.4 3.8 0.30 48.

SwissFranc 5.1 3.8 2.6 0.05 38.

TY10Y Notes 5.9 5.5 4.9 0.10 27.

Wheat 5.6 6.0 6.9 0.02 49.

Yen/USD 9.7 6.1 2.5 0.27 38.
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9 FAT TA I L S F R O M R E C U R S I V E
U N C E R TA I N T Y

Second Version. An earlier version was presented at Benoit Mandelbrot’s Scientific
Memorial, New Haven, April 11, 2011, under the title: The Future Will Be More Fat

Tailed Than The Past

Chapter Summary 9: Error about Errors. Probabilistic representations re-
quire the inclusion of model (or representation) error (a probabilistic state-
ment has to have an error rate), and, in the event of such treatment, one also
needs to include second, third and higher order errors (about the methods
used to compute the errors) and by a regress argument, to take the idea to
its logical limit, one should be continuously reapplying the thinking all the
way to its limit unless when one has a reason to stop, as a declared a priori
that escapes quantitative and statistical method. We show how power laws
emerge from nested errors on errors of the standard deviation for a Gaus-
sian distribution. We also show under which regime regressed errors lead
to non-power law fat-tailed distributions.

9.1 layering uncertainty
With the Central Limit Theorem: we start with a distribution and, under some
conditions, end with a Gaussian. The opposite is more likely to be true. We start
with a Gaussian and under error rates we end with a fat-tailed distribution.

Unlike with the Bayesian compounding the:

1. Numbers of recursions

and

2. Structure of the error of the error (declining, flat, multiplicative or additive)

determine the final moments and the type of distribution.
Note that historically, derivations of power laws have been statistical (cumula-

tive advantage, preferential attachment, winner-take-all effects, criticality), and the
properties derived by Yule, Mandelbrot, Zipf, Simon, Bak, and others result from
structural conditions or breaking the independence assumptions in the sums of ran-
dom variables allowing for the application of the central limit theorem. This work
is entirely epistemic, based on the projection of standard philosophical doubts into
the future, in addition to regress arguments.

Missing the point

Savage, in his Foundation of Statistics [99]:
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fat tails from recursive uncertainty

Σ

H1- a1LΣ

Ha1 + 1LΣ

Ha1 + 1L H1- a2LΣ

Ha1 + 1L Ha2 + 1LΣ

H1- a1L H1- a2LΣ

H1- a1L Ha2 + 1LΣ

H1- a1L H1- a2L H1- a3LΣ

H1- a1L Ha2 + 1L H1- a3LΣ

Ha1 + 1L H1- a2L H1- a3LΣ

Ha1 + 1L Ha2 + 1L H1- a3LΣ

H1- a1L H1- a2L Ha3 + 1LΣ

H1- a1L Ha2 + 1L Ha3 + 1LΣ

Ha1 + 1L H1- a2L Ha3 + 1LΣ

Ha1 + 1L Ha2 + 1L Ha3 + 1LΣ

Figure 9.1: Three levels of multiplicative relative error rates for the standard deviation σ ,
with (1± an) the relative error on an−1

Estimate of the accuracy of estimates:
The doctrine is often expressed that a point estimate is of little, or no, value
unless accompanied by an estimate of its own accuracy. This doctrine, which
for the moment I will call the doctrine of accuraty estimation, may be a little old-
fashioned, but 1 think some critical discussion of it here is in order for two
reasons. In the first place, the doctrine is still widely considered to contain
more than a grain of truth. For example, many readers will think it strange,
and even remiss, that I have written a long chapter (Chapter 15) on estimation
without even sugesting that an estimate should be accompanied by an estimate
of its accuracy. In the second place, it seems to me that the concept of interval
estimation, which is the subject of the next section, has largely evolved from
the doctrine of accuracy estimation and that discussion of the doctrine will,
for some, pave the way for discuasion of interval estimation. The doctrine of
accuracy estimation is vague, even by the standards of the verbalistic tradition,
for it does not say what should be taken as a measure of accuracy, that is, what
an estimate of accuracy ahould estimate.
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9.1 layering uncertainty

So we got diverted into the wrong direction for all these years as it did not hit
Savage that we should perhaps see what effect would the estimation error have via
structured perturbation.1

Taking the doctrine literally, it evidently leads to endess regression for an esti-
mate of the accuracy of an estimate should presumably be accompanied by an
estimate of its own accuracy, and so on forever.

So as we will see in this chapter, we can actually see the effect with a great deal of
clarity.

Layering Uncertainties

Take a standard probability distribution, say the Gaussian. The measure of dis-
persion, here σ, is estimated, and we need to attach some measure of dispersion
around it. The uncertainty about the rate of uncertainty, so to speak, or higher
order parameter, similar to what called the “volatility of volatility” in the lingo of
option operators –here it would be “uncertainty rate about the uncertainty rate”.
And there is no reason to stop there: we can keep nesting these uncertainties into
higher orders, with the uncertainty rate of the uncertainty rate of the uncertainty
rate, and so forth. There is no reason to have certainty anywhere in the process.

Main Results

Note that unless one stops the branching at an early stage, all the results raise small
probabilities (in relation to their remoteness; the more remote the event, the worse
the relative effect).

1. Under the first regime of proportional constant (or increasing) recursive layers
of uncertainty about rates of uncertainty expressed as standard deviation, the
distribution converges to a power law with infinite variance, even when one
starts with a standard Gaussian.

2. Under the same first regime, expressing uncertainty about uncertainty in
terms of variance, the distribution converges to a power law with finite vari-
ance but infinite (or undefined) higher moments.

3. Under the other regime, where the errors are decreasing (proportionally) for
higher order errors, the ending distribution becomes fat-tailed but in a benign
way as it retains its finite variance attribute (as well as all higher moments),
allowing convergence to Gaussian under Central Limit.

We manage to set a boundary between these two regimes.
In both regimes the use of a thin-tailed distribution is not warranted unless higher

order errors can be completely eliminated a priori.

1 I thank Dane Rook for the discussion.
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fat tails from recursive uncertainty

Higher order integrals in the Standard Gaussian Case

We start with the case of a Gaussian and focus the uncertainty on the assumed
standard deviation. Define φ(µ,σ,x) as the Gaussian PDF for value x with mean µ
and standard deviation σ.

A 2ndorder stochastic standard deviation is the integral of φ across values of σ
∈ R+, under the distribution f (σ̄, σ1, σ) , with σ1 its scale parameter (our approach
to trach the error of the error), not necessarily its standard deviation; the expected
value of σ1 is σ1.

f (x)1 =
∫ ∞

0
φ(µ, σ, x) f (σ̄, σ1, σ) dσ

Generalizing to the Nth order, the density function f(x) becomes

f (x)N =
∫ ∞

0
. . .
∫ ∞

0
φ(µ, σ, x) f (σ̄, σ1, σ)

f (σ1, σ2, σ1) ... f (σN−1, σN , σN−1)dσ dσ1 dσ2 ... dσN (9.1)

The problem is that this approach is parameter-heavy and requires the specifica-
tions of the subordinated distributions (in finance, the lognormal has been tradition-

ally used for σ2 (or Gaussian for the ratio Log[ σ2
t

σ2 ] since the direct use of a Gaussian
allows for negative values). We would need to specify a measure f for each layer
of error rate. Instead this can be approximated by using the mean deviation for σ,
as we will see next2.

Discretization using nested series of two-states for σ- a simple multiplicative process

There are quite effective simplifications to capture the convexity, the ratio of (or
difference between) φ(µ,σ,x) and

∫ ∞
0 φ(µ, σ, x) f (σ̄, σ1, σ)dσ (the first order standard

deviation) by using a weighted average of values of σ, say, for a simple case of one-
order stochastic volatility:

σ(1± a1)

with 0 ≤ a1 < 1, where a1 is the proportional mean absolute deviation for σ, in
other word the measure of the absolute error rate for σ. We use 1

2 as the probability
of each state. Such a method does not aim at preserving the variance as in standard
stochastic volatility modeling, rather the STD.

Thus the distribution using the first order stochastic standard deviation can be
expressed as:

f (x)1 =
1
2

(
φ(µ, σ (1 + a1), x) + φ(µ, σ(1− a1), x)

)
(9.2)

2 A well developed technique for infinite (or non integrable) Gaussian cumulants, now, is the Wiener
Chaos expansion [85].
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9.1 layering uncertainty

Now assume uncertainty about the error rate a1, expressed by a2, in the same
manner as before. Thus, as a first method, the multiplicative effect, in place of
1± a1 we have (1± a1)(1± a2). Later we will use the non-multiplicative (or, rather,
weakly multiplicative) error expansion σ(1± (a1(1± (a2(1± a3( ...))).

The second order stochastic standard deviation:

f (x)2 =
1
4

(
φ

(
µ, σ(1 + a1)(1 + a2), x

)
+

φ

(
µ, σ(1− a1)(1 + a2), x) + φ(µ, σ(1 + a1)(1− a2), x

)
+ φ
(

µ, σ(1− a1)(1− a2), x
))

(9.3)

and the Nth order:

f (x)N =
1

2N

2N

∑
i=1

φ(µ, σMN
i , x)

where MN
i is the ith scalar (line) of the matrix MN (2N × 1

)

MN =

(
N

∏
j=1

(ajTi,j + 1)

)2N

i=1

and Ti,j the element of ithline and jthcolumn of the matrix of the exhaustive com-
bination of n-Tuples of the set {−1, 1},that is the sequences of n length (1, 1, 1, ...)
representing all combinations of 1 and −1.

for N=3,

T =



1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1



and
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fat tails from recursive uncertainty
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0.6

Figure 9.2: Thicker tails (higher
peaks) for higher values of N; here
N = 0, 5, 10, 25, 50, all values of a= 1

10

M3 =



(1− a1) (1− a2) (1− a3)
(1− a1) (1− a2) (a3 + 1)
(1− a1) (a2 + 1) (1− a3)
(1− a1) (a2 + 1) (a3 + 1)
(a1 + 1) (1− a2) (1− a3)
(a1 + 1) (1− a2) (a3 + 1)
(a1 + 1) (a2 + 1) (1− a3)
(a1 + 1) (a2 + 1) (a3 + 1)



So M3
1 = ((1− a1)(1− a2)(1− a3)) , etc.

Note that the various error rates ai are not similar to sampling errors, but rather
projection of error rates into the future. They are, to repeat, epistemic.

The Final Mixture Distribution The mixture weighted average distribution (recall
that φ is the ordinary Gaussian PDF with mean µ, std σ for the random variable x).

f (x|µ, σ, M, N) = 2−N
2N

∑
i=1

φ
(

µ, σMN
i , x

)

It could be approximated by a lognormal distribution for σ and the correspond-
ing V as its own variance. But it is precisely the V that interest us, and V depends
on how higher order errors behave.

Next let us consider the different regimes for higher order errors.
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9.2 regime 1 (explosive): case of a constant error parameter a

9.2 regime 1 (explosive): case of a constant error
parameter a

Special case of constant a

Assume that a1 = a2 = ...an = a, i.e. the case of flat proportional error rate a. The
Matrix M collapses into a conventional binomial tree for the dispersion at the level
N.

f (x|µ, σ, N) = 2−N
N

∑
j=0

(
N
j

)
φ
(

µ, σ(a + 1)j(1− a)N−j, x
)

(9.4)

Because of the linearity of the sums, when a is constant, we can use the binomial
distribution as weights for the moments (note again the artificial effect of constrain-
ing the first moment µ in the analysis to a set, certain, and known a priori).

M1(N) = µ

M2(N) = σ2 (a2 + 1
)N + µ2

M3(N) = 3 µσ2 (a2 + 1
)N + µ3

M4(N) = 6 µ2σ2 (a2 + 1
)N + µ4 + 3

(
a4 + 6a2 + 1

)N
σ4

For clarity, we simplify the table of moments, with µ=0

M1(N) = 0
M2(N) =

(
a2 + 1

)N
σ2

M3(N) = 0
M4(N) = 3

(
a4 + 6a2 + 1

)N
σ4

M5(N) = 0
M6(N) = 15

(
a6 + 15a4 + 15a2 + 1

)N
σ6

M7(N) = 0
M8(N) = 105

(
a8 + 28a6 + 70a4 + 28a2 + 1

)N
σ8

Note again the oddity that in spite of the explosive nature of higher moments,
the expectation of the absolute value of x is both independent of a and N, since

the perturbations of σ do not affect the first absolute moment =
√

2
π σ (that is, the

initial assumed σ). The situation would be different under addition of x.
Every recursion multiplies the variance of the process by (1 + a2 ). The

process is similar to a stochastic volatility model, with the standard deviation (not
the variance) following a lognormal distribution, the volatility of which grows with
M, hence will reach infinite variance at the limit.

Consequences

For a constant a > 0, and in the more general case with variable a where an ≥ an−1,
the moments explode.

• Even the smallest value of a >0, since
(
1 + a2)N is unbounded, leads to the

second moment going to infinity (though not the first) when N→ ∞. So
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fat tails from recursive uncertainty

10.05.02.0 20.03.0 30.01.5 15.07.0
Log x

10-13

10-10

10-7

10-4

0.1

Log PrHxL

a=
1

10
, N=0,5,10,25,50

Figure 9.3: LogLog Plot of the prob-
ability of exceeding x showing
power law-style flattening as N rises.
Here all values of a= 1/10

something as small as a .001% error rate will still lead to explosion of moments
and invalidation of the use of the class of L2 distributions.

• In these conditions, we need to use power laws for epistemic reasons, or, at
least, distributions outside the L2 norm, regardless of observations of past
data.

Note that we need an a priori reason (in the philosophical sense) to cutoff the N
somewhere, hence bound the expansion of the second moment.

9.3 convergence to power laws
Convergence to power law would require the following from the limit distribution.
Where P>x is short for P(X > x ), P>x = L(x ) x−α∗ and L(x ) is a slowly varying
function.

α∗ = lim
x→∞

lim
N→∞

α(x , N )

We know from the behavior of moments that, if convergence is satisfied, α∗ ∈
(1, 2).

We can have a visual idea with the Log-Log plot (Figure 9.3) how, at higher or-
ders of stochastic volatility, with equally proportional stochastic coefficient, (where
a1 = a2 = . . . = an = 1

10 ) the density approaches that of a power law, as shown in
flatter density on the LogLog plot. The probabilities keep rising in the tails as we
add layers of uncertainty until they seem to reach the boundary of the power law,
while ironically the first moment remains invariant.

The same effect takes place as a increases towards 1, as at the limit the tail expo-
nent P>x approaches 1 but remains >1.

α(x , N ) = −1 −
∂ log f (x |µ ,σ , N )

∂x
∂ log(x )

∂x1
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9.3 convergence to power laws

Simplifying and normalizing, with µ = 0, σ = 1,

α(x , N ) = −1 − x κ1 ( N )
κ2 ( N )

(9.5)

where

κ1 ( N ) =
K

∑
j=0

x (a + 1)−3 j
(
−(1 − a)3 j−3K

)
(

K
j

)
exp

(
− 1

2
x2 (a + 1)−2 j (1 − a)2 j−2K

)

κ2 ( N ) =
K

∑
j=0

(a + 1)− j (1 − a) j−K

(
K
j

)
exp

(
− 1

2
x2 (a + 1)−2 j (1 − a)2 j−2K

)
Making the variable continuous (binomial as ratio of gamma functions) makes it

equivalent, at large N , to:

α(x , N ) = 1 − x (1 − a)N κ1 ( N )√
2 κ2 ( N )

(9.6)

where

κ∗1 ( N ) =
∫ N

0
− x (a + 1)−3y Γ( N + 1)(1 − a)3(y−N )

Γ(y + 1)Γ( N − y + 1)

exp
(
− 1

2
x2 (a + 1)−2y (1 − a)2y−2 N

)
dy

κ∗2 ( N ) =
∫ N

0

( 2
a+1 − 1

)y
Γ( N + 1)

√
2 Γ(y + 1)Γ( N − y + 1)

exp
(
− 1

2
x2 (a + 1)−2y (1 − a)2y−2 N

)
dy

Effect on Small Probabilities

Next we measure the effect on the thickness of the tails. The obvious effect is the
rise of small probabilities.

Take the exceedant probability,that is, the probability of exceeding K, given N,
for parameter a constant:

P > K |N =
N

∑
j=0

2−N−1

(
N
j

)
erfc

(
K√

2σ(a + 1) j (1 − a)N− j

)
(9.7)
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fat tails from recursive uncertainty

where erfc(.) is the complementary of the error function, 1-erf(.), erf(z) = 2√
π

∫ z
0 e− t2

dt

Convexity effect The next two tables shows the ratio of exceedant probability un-
der different values of N divided by the probability in the case of a standard Gaus-
sian.

Table 16: Case of a = 1
10

N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 1.01724 1.155 7

10 1.0345 1.326 45

15 1.05178 1.514 221

20 1.06908 1.720 922

25 1.0864 1.943 3347

Table 17: Case of a = 1
100

N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 2.74 146 1.09× 1012

10 4.43 805 8.99× 1015

15 5.98 1980 2.21× 1017

20 7.38 3529 1.20× 1018

25 8.64 5321 3.62× 1018

9.4 regime 1b: preservation of variance

M1(N) = µ

M2(N) = µ2 + σ2

M3(N) = µ3 + 3σ2µ

M4(N) = 3σ4 (a2 + 1
)N + µ4 + 6µ2σ2

Hence α ∈ (3, 4)

9.5 regime 2: cases of decaying parameters an

As we said, we may have (actually we need to have) a priori reasons to decrease the
parameter a or stop N somewhere. When the higher order of ai decline, then the
moments tend to be capped (the inherited tails will come from the lognormality of
σ).

Regime 2-a;"bleed" of higher order error

Take a "bleed" of higher order errors at the rate λ, 0≤ λ < 1 , such as an = λ aN−1,
hence aN = λN a1, with a1 the conventional intensity of stochastic standard devia-
tion. Assume µ = 0.
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9.5 regime 2: cases of decaying parameters an

Σ

1- a1 Σ

a1 + 1 Σ

Ha1 + 1L H1- a2L Σ

Ha1 + 1L Ha2 + 1L Σ

H1- a1L H1- a2L Σ

H1- a1L Ha2 + 1L Σ

H1- a1L H1- a2L H1- a3L Σ

H1- a1L Ha2 + 1L H1- a3L Σ

Ha1 + 1L H1- a2L H1- a3L Σ

Ha1 + 1L Ha2 + 1L H1- a3L Σ

H1- a1L H1- a2L Ha3 + 1L Σ

H1- a1L Ha2 + 1L Ha3 + 1L Σ

Ha1 + 1L H1- a2L Ha3 + 1L Σ

Ha1 + 1L Ha2 + 1L Ha3 + 1L Σ

Figure 9.4: Preserving the variance

With N=2 , the second moment becomes:

M2(2) =
(

a2
1 + 1

)
σ2
(

a2
1λ2 + 1

)
With N=3,

M2(3) = σ2
(

1 + a2
1

) (
1 + λ2a2

1

) (
1 + λ4a2

1

)
finally, for the general N:

M3(N) =
(

a2
1 + 1

)
σ2

N−1

∏
i=1

(
a2

1λ2i + 1
)

(9.8)

We can reexpress ( 9.8) using the Q-Pochhammer symbol (a; q)N = ∏N−1
i=1

(
1− aqi)

M2(N) = σ2
(
−a2

1; λ2
)

N

Which allows us to get to the limit

lim
N→∞

M2(N) = σ2
(
λ2; λ2)

2
(
a2

1; λ2)
∞

(λ2 − 1)2
(λ2 + 1)
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fat tails from recursive uncertainty

As to the fourth moment:

By recursion:

M4 ( N ) = 3σ4
N−1

∏
i=0

(
6a2

1 λ2 i + a4
1 λ4 i + 1

)

M4 ( N ) = 3σ4
((

2
√

2 − 3
)

a2
1 ; λ2

)
N (

−
(

3 + 2
√

2
)

a2
1 ; λ2

)
N (9.9)

lim
N→∞

M4 ( N ) = 3σ4
((

2
√

2 − 3
)

a2
1 ; λ2

)
∞ (

−
(

3 + 2
√

2
)

a2
1 ; λ2

)
∞ (9.10)

So the limiting second moment for λ=.9 and a_1=.2 is just 1.28 σ2 , a significant
but relatively benign convexity bias. The limiting fourth moment is just 9.88σ4 ,
more than 3 times the Gaussian’s (3 σ4), but still finite fourth moment. For small
values of a and values of λ close to 1, the fourth moment collapses to that of a
Gaussian.

Regime 2-b; Second Method, a Non Multiplicative Error Rate

In place of (1 ± a1 )(1 ± a2 ), we use, for N recursions,

σ(1 ± (a1 (1 ± (a2 (1 ± a3 ( ...)))

Assume a1 = a2 = . . . = a N

P(x , µ , σ , N ) =
1
L

L

∑
i=1

f
(

x , µ , σ
(

1 +
(

T N .A N
)

i

)

(M N .T + 1) i is the i t h component of the ( N × 1) dot product of T N the matrix
of Tuples in , L the length of the matrix, and A contains the parameters

A N =
(

a j
)

j=1,...N

So for instance, for N = 3, T =
(

1, a , a2 , a3)
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9.6 conclusion and suggested application

A3 T3 =



a3 + a2 + a
−a3 + a2 + a

a3 − a2 + a
−a3 − a2 + a

a3 + a2 − a
−a3 + a2 − a

a3 − a2 − a
−a3 − a2 − a


The moments are as follows:

M1 ( N ) = µ

M2 ( N ) = µ2 + 2σ

M4 ( N ) = µ4 + 12µ2 σ + 12σ2
N

∑
i=0

a2 i

At the limit:

lim
N→∞

M4 ( N ) =
12σ2

1 − a2 + µ4 + 12µ2 σ

which is very mild.

9.6 conclusion and suggested application

Counterfactuals, Estimation of the Future v/s Sampling Problem

Note that it is hard to escape higher order uncertainties, even outside of the use of
counterfactual: even when sampling from a conventional population, an error rate
can come from the production of information (such as: is the information about
the sample size correct? is the information correct and reliable?), etc. These higher
order errors exist and could be severe in the event of convexity to parameters, but
they are qualitatively different with forecasts concerning events that have not taken
place yet.

This discussion is about an epistemic situation that is markedly different from
a sampling problem as treated conventionally by the statistical community, particu-
larly the Bayesian one. In the classical case of sampling by Gosset ("Student", 1908)
from a normal distribution with an unknown variance (Fisher, 1925), the Student
T Distribution (itself a power law) arises for the estimated mean since the square
of the variations (deemed Gaussian) will be Chi-square distributed. The initial sit-
uation is one of relatively unknown variance, but that is progressively discovered
through sampling; and the degrees of freedom (from an increase in sample size)
rapidly shrink the tails involved in the underlying distribution.

The case here is the exact opposite, as we have an a priori approach with no data:
we start with a known priorly estimated or "guessed" standard deviation, but with
an unknown error on it expressed as a spread of branching outcomes, and, given
the a priori aspect of the exercise, we have no sample increase helping us to add
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fat tails from recursive uncertainty

to the information and shrink the tails. We just deal with nested "counterfactuals"
(actually the equivalent of couterfactuals projected into the future).

Note that given that, unlike the Gosset’s situation, we have a finite mean (since
we don’t hold it to be stochastic and know it a priori) hence we necessarily end in
a situation of finite first moment (hence escape the Cauchy distribution), but, as we
will see, a more complicated second moment. 3 4

The Future is Fatter Tailed Than The Past

A simple application of these derivations: It shows why any uncertainty about the
link between the past and the future leads to underestimation of fat tails.

3 See the discussion of the Gosset and Fisher approach in Chapter 3 of Mosteller and Tukey [78].
4 I thank Andrew Gelman and Aaron Brown for the discussion.
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10 PA R A M E T R I Z AT I O N A N D TA I L S

Chapter Summary 10: We present case studies around the point that, simply,
some models depend quite a bit on small variations in parameters. The
effect on the Gaussian is easy to gauge, and expected. But many believe
in power laws as panacea. Even if one believed the r.v. was power law
distributed, one still would not be able to make a precise statement on tail
risks. Shows weaknesses of calibration of Extreme Value Theory.

This chapter is illustrative; it will initially focus on nonmathematical limits to
producing estimates of MX

T ( A , f ) when A is limited to the tail. We will see how
things get worse when one is sampling and forecasting the maximum of a random
variable.

10.1 some bad news concerning power laws
We saw the shortcomings of parametric and nonparametric methods so far. What
are left are power laws; they are a nice way to look at the world, but we can never
really get to know the exponent α, for a spate of reasons we will see later (the
concavity of the exponent to parameter uncertainty). Suffice for now to say that the
same analysis on exponents yields a huge in-sample variance and that tail events
are very sensitive to small changes in the exponent.

For instance, for a broad set of stocks over subsamples, using a standard esti-
mation method (the Hill estimator), we get subsamples of securities. Simply, the
variations are too large for a reliable computation of probabilities, which can vary
by > 2 orders of magnitude. And the effect on the mean of these probabilities is
large since they are way out in the tails.

The way to see the response to small changes in tail exponent with probability:
considering P>K ∼ K−α, the sensitivity to the tail exponent ∂P>K

∂α = −K−α log(K).
Now the point that probabilities are sensitive to assumptions brings us back to

the Black Swan problem. One might wonder, the change in probability might be
large in percentage, but who cares, they may remain small. Perhaps, but in fat
tailed domains, the event multiplying the probabilities is large. In life, it is not
the probability that matters, but what one does with it, such as the expectation or
other moments, and the contribution of the small probability to the total moments
is large in power law domains.

For all powerlaws, when K is large, with α > 1, the unconditional "shortfall"
S+ =

∫ ∞
K xφ(x)dx and S−

∫ −K
−∞ xφ(x)dx approximate to α

α−1 K−α+1 and - α
α−1 K−α+1,

which are extremely sensitive to α particularly at higher levels of K,

∂S+

∂α
= −K1−α((α− 1)α log(K) + 1)

(α− 1)2 .
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parametrization and tails
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Figure 10.1: The effect of small changes in tail exponent on a probability of exceeding a
certain point. To the left, a histogram of possible tail exponents across >4 103 variables. To
the right the probability, probability of exceeding 7 times the scale of a power law ranges
from 1 in 10 to 1 in 350. For further in the tails the effect is more severe.

There is a deeper problem related to the effect of model error on the estima-
tion of α, which compounds the problem, as α tends to be underestimated by Hill
estimators and other methods, but let us leave it for now.

10.2 extreme value theory: not a panacea
We saw earlier how difficult it is to compute risks using power laws, owing to
excessive model sensitivity. Let us apply this to the Extreme Value Theory, EVT.
(The idea is that is useable by the back door as test for nonlinearities exposures not
to get precise probabilities).

On its own it can mislead. The problem is the calibration and parameter un-
certainty –in the real world we don’t know the parameters. The ranges in the
probabilities generated we get are monstrous.

We start with a short presentation of the idea, followed by an exposition of the
difficulty.

What is Extreme Value Theory? A Simplified Exposition

Let us proceed with simple examples.
Case 1, Thin Tailed Distribution
The Extremum of a Gaussian variable: Say we generate n Gaussian variables

(Xi)
n
i=1 with mean 0 and unitary standard deviation, and take the highest value we

find. We take the upper bound Mj for the n-size sample run j

Mj = max
(
Xi,j
)n

i=1

Assume we do so p times, to get p samples of maxima for the sequence M,

M = max
((

Xi,j
)n

i=1

)p

j=1
.

Figure 10.2 and 10.2 plot a histogram of the result of both the simulation and the
fitting of a distribution.
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10.2 extreme value theory: not a panacea

3.5 4.0 4.5 5.0 5.5
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Figure 10.2: Taking p samples of
Gaussian maxima; here N = 30K,
M = 10K. We get the Mean of the
maxima = 4.11159, Standard Devia-
tion= 0.286938; Median = 4.07344
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Figure 10.3: Fitting an extreme
value distribution (Gumbel for the
maxima) α= 3.97904, β= 0.235239

Let us now fit to the sample from the simulation to g, the density of an Extreme
Value Distribution for x (or the Gumbel for the negative variable −x), with location

and scale parameters α and β, respectively: g(x; α, β) = e
α−x

β
−e

α−x
β

β .

Some Intuition: How does the Extreme Value Distribution emerge?

Consider that the probability of exceeding the maximum corresponds to the rank
statistics, that is the probability of all variables being below the observed sample.

P (X1 < x, X2 < x, . . . , Xn < x) =
n⋂

i=1

P(Xi) = F(x)n,

where F is the cumulative d.f of the Gaussian. Taking the first derivative of the
cumulative distribution to get the density of the distribution of the maximum,

pn(x) ≡ ∂x (F(x)n) = −
2

1
2−nne−

x2
2

(
erf
(

x√
2

)
+ 1
)n−1

√
π

Now we have norming constants anand bn such that

G(x) ≡ P
(

M(n)− an

bn
> x

)
.
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parametrization and tails

100 200 300 400 500 600

0.01

0.02

0.03

0.04

Figure 10.4: Fitting a Fréchet distri-
bution to the Student T generated
with α=3 degrees of freedom. The
Frechet distribution α=3, β=32 fits
up to higher values of E.But next two
graphs shows the fit more closely.

But there is a basin of attraction condition for that. We need to find an x0 < ∞
beyond which at the limit of n→ ∞ , x0 = sup{x : F(x) < 1}

Derivations

(1− P(X > a(n)x + b(n)))N = G(x)

exp(−NP(X > ax + b)) = G(x)

After some derivations[see below], g(x) = e
α−x

β
−e

α−x
β

β , where

α = −
√

2erfc−1 (2− 2
n
)
, where erfc−1is the inverse error function, and

β =
√

2
(

erfc−1 (2− 2
n
)
− erfc−1 (2− 2

en
))

For n = 30K, {α, β} = {3.98788, 0.231245}
The approximations become

√
2 log(n)− log(log(n))+log(4π)

2
√

2 log(n)
and (2 log(n))−

1
2 respec-

tively + o
(

(log n)−
1
2

)

Extreme Values for Fat-Tailed Distribution

Now let us generate, exactly as before, but change the distribution, with N random
power law distributed variables Xi, with tail exponent α=3, generated from a Stu-
dent T Distribution with 3 degrees of freedom. Again, we take the upper bound.
This time it is not the Gumbel, but the Fréchet distribution that would fit the result,
using −critically− the same α, Fréchet φ(x; α, β)=

αe−
(

x
β

)−α (
x
β

)−α−1

β
,

for x>0
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10.2 extreme value theory: not a panacea
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Figure 10.5: Seen more closely.

α 1
P>3β

1
P>10β

1
P>20β

1
P>40β

1
P>80β

1. 4. 11. 21. 41. 81.
1.25 4. 18. 43. 101. 240.
1.5 6. 32. 90. 253. 716.
1.75 7. 57. 190. 637. 2140.
2 10. 101. 401. 1601. 6400
2.25 12. 178. 846. 4024. 19141.
2.5 16. 317. 1789. 10120. 57244.
2.75 21. 563. 3783. 25449. 171198.
3. 28. 1001. 8001. 64001. 512001.
3.25 36. 1779. 16918. 160952. 1.5× 106

3.5 47. 3163. 35778. 404772. 4.5×106

3.75 62. 5624. 75660. 1.01×106
1.3×107

4. 82. 10001. 160001. 2.56×106
4.0×107

4.25 107. 17783. 338359. 6.43×106
1.2×108

4.5 141. 31623. 715542. 1.61×107
3.6×108

4.75 185. 56235. 1.5×106
4.07×107

1.1×109

5. 244. 100001. 3.2×106
1.02×108

3.27×109

Table 18: EVT for different tail parameters α. We can see how a perturbation of α moves
the probability of a tail event from 6, 000 to 1.5× 106 . [ADDING A TABLE FOR HIGHER
DIMENSION WHERE THINGS ARE A LOT WORSE]

223



parametrization and tails

A Severe Inverse Problem for EVT

In the previous case we started with the distribution, with the assumed parameters,
then obtained the corresponding values, just as these "risk modelers" do. In the
real world, we don’t quite know the calibration, the α of the distribution, assuming
(generously) that we know the distribution. So here we go with the inverse problem.
The next table illustrates the different calibrations of PK the probabilities that the
maximum exceeds a certain value K (as a multiple of β under different values of K
and α.

Consider that the error in estimating the α of a distribution is quite large, often
> 1

2 , and typically overstimated. So we can see that we get the probabilities mixed
up > an order of magnitude.In other words the imprecision in the computation of
the α compounds in the evaluation of the probabilities of extreme values.

10.3 using power laws without being harmed by
mistakes

We can use power laws in the "near tails" for information, not risk management.
That is, not pushing outside the tails, staying within a part of the distribution for
which errors are not compounded.

I was privileged to get access to a database with cumulative sales for editions in
print that had at least one unit sold that particular week (that is, conditional of the
specific edition being still in print). I fit a powerlaw with tail exponent α ' 1.3 for
the upper 10% of sales (graph), with N=30K. Using the Zipf variation for ranks of
powerlaws, with rx and ry the ranks of book x and y, respectively, Sx and Sy the
corresponding sales

Sx

Sy
=
(

rx

ry

)
− 1

α

So for example if the rank of x is 100 and y is 1000, x sells
(

100
1000

)− 1
1.3 = 5.87

times what y sells.
Note this is only robust in deriving the sales of the lower ranking edition (ry>

rx) because of inferential problems in the presence of fat-tails.

Α=1.3

Near tail

100 10
4

10
6

X

10
-4

0.001

0.01

0.1

1

P>X

224



10.3 using power laws without being harmed by mistakes

This works best for the top 10,000 books, but not quite the top 20 (because the
tail is vastly more unstable). Further, the effective α for large deviations is lower
than 1.3. But this method is robust as applied to rank within the "near tail".
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H P O I S S O N V S . P O W E R L A W TA I L S

h.1 beware the poisson
By the masquerade problem, any power law can be seen backward as a Gaussian
plus a series of simple (that is, noncompound) Poisson jumps, the so-called jump-
diffusion process. So the use of Poisson is often just a backfitting problem, where
the researcher fits a Poisson, happy with the "evidence".

The next exercise aims to supply convincing evidence of scalability and NonPoisson-
ness of the data (the Poisson here is assuming a standard Poisson). Thanks to the
need for the probabililities add up to 1, scalability in the tails is the sole possible
model for such data. We may not be able to write the model for the full distribution
–but we know how it looks like in the tails, where it matters.

The Behavior of Conditional Averages With a scalable (or "scale-free") distribu-
tion, when K is "in the tails" (say you reach the point when 1− F(X > x) = Cx−α

where C is a constant and α the power law exponent), the relative conditional ex-
pectation of X (knowing that X >K) divided by K, that is, E[X|X>K]

K is a constant,
and does not depend on K. More precisely, the constant is α

α−1 .∫ ∞
K x f (x, α) dx∫ ∞
K f (x, α) dx

=
Kα

α− 1

This provides for a handy way to ascertain scalability by raising K and looking
at the averages in the data.

Note further that, for a standard Poisson, (too obvious for a Gaussian): not only
the conditional expectation depends on K, but it "wanes", i.e.

lim
K→∞

(∫ ∞
K

mx

Γ(x) dx∫ ∞
K

mx

x! dx

/
K

)
= 1

Calibrating Tail Exponents In addition, we can calibrate power laws. Using K as
the cross-over point, we get the α exponent above it –the same as if we used the
Hill estimator or ran a regression above some point.

We heuristically defined fat tails as the contribution of the low frequency events
to the total properties. But fat tails can come from different classes of distributions.
This chapter will present the difference between two broad classes of distributions.

This brief test using 12 million pieces of exhaustive returns shows how equity
prices (as well as short term interest rates) do not have a characteristic scale. No
other possible method than a Paretan tail, albeit of unprecise calibration, can chara-
terize them.
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poisson vs. power law tails

h.2 leave it to the data
This exercise was done using about every piece of data in sight: single stocks, macro
data, futures, etc.

Equity Dataset We collected the most recent 10 years (as of 2008) of daily prices
for U.S. stocks (no survivorship bias effect as we included companies that have
been delisted up to the last trading day), n= 11,674,825 , deviations expressed in
logarithmic returns.
We scaled the data using various methods.

The expression in "numbers of sigma" or standard deviations is there to conform
to industry language (it does depend somewhat on the stability of sigma). In the
"MAD" space test we used the mean deviation.

MAD(i) =

log Si
t

Si
t−1

1
N ∑t≤n

∣∣∣∣ log Si
t−j

Si
−j+t−1

∣∣∣∣
We focused on negative deviations. We kept moving K up until to 100 MAD

(indeed) –and we still had observations.

Impliedα|K=
E [X|X<K]

E [X|X<K]− K

MAD E [X|X<K] n(forX < K) E[X|X<K ]
K Impliedα

−1. −1.75 1.32× 106 1.75 2.32
−2. −3.02 300806. 1.51 2.95
−5. −7.96 19285. 1.59 2.68
−10. −15.32 3198. 1.53 2.87
−15. −22.32 1042. 1.48 3.04
−20. −30.24 418. 1.51 2.95
−25. −40.87 181. 1.63 2.57
−50. −101.75 24. 2.03 1.96
−70. −156.70 11. 2.23 1.80
−75. −175.42 9. 2.33 1.74
−100. −203.99 7. 2.03 1.96

Sigma-Space In the "sigma space" test we used a rolling 22 day window scaled by
the noncentral standard deviations. We did not add a mean for reasons explained
elsewhere.

Short term Interest Rates Literally, you do not even have a large number K for
which scalability drops from a small sample effect.
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h.2 leave it to the data

STD E [X|X<K] n(forX < K) E[X|X<K ]
K Impliedα

−2. −3.01 343952. 1.50 2.97
−5. −8.02 21156. 1.60 2.65
−10. −15.60 3528. 1.56 2.78
−20. −30.41 503. 1.52 2.91
−50. −113.324 20. 2.26 1.78
−70. −170.105 10. 2.43 1.69
−80. −180.84 9. 2.26 1.79
−90. −192.543 8. 2.13 1.87
−100. −251.691 5. 2.51 1.65

EuroDollars Front Month 1986-2006

n=4947

MAD E [X|X<K] n(forX < K) E[X|X<K ]
K Impliedα

−0.5 −1.8034 1520 3.6068 1.38361
−1. −2.41323 969 2.41323 1.7076
−5. −7.96752 69 1.5935 2.68491
−6. −9.2521 46 1.54202 2.84496
−7. −10.2338 34 1.46197 3.16464
−8. −11.4367 24 1.42959 3.32782

Global Macroeconomic data

UK Rates 1990-2007

n=4143

MAD E [X|X<K] n(forX < K) E[X|X<K ]
K Impliedα

0.5 1.68802 1270 3.37605 1.42087
1. 2.23822 806 2.23822 1.80761
3. 4.97319 140 1.65773 2.52038
5. 8.43269 36 1.68654 2.45658
6. 9.56132 26 1.59355 2.68477
7. 11.4763 16 1.63947 2.56381
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11 B R O W N I A N M OT I O N I N T H E
R E A L W O R L D

Chapter Summary 11: Much of the work concerning martingales and Brow-
nian motion has been idealized; we look for holes and pockets of mismatch
to reality, with consequences. Infinite (or undefined) higher moments are
not compatible with Ito calculus −outside the asymptote. Path dependence
as a measure of fragility.

11.1 path dependence and history as revelation
of antifragility

Path 1 , Smin

j

ST
j

0.0 0.2 0.4 0.6 0.8 1.0
Time

80

100

120

140

S

Figure 11.1: Brownian Bridge Pinned at 100 and 120, with multiple realizations
{Sj

0, Sj
1, .., Sj

T}, each indexed by j ; the idea is to find the path j that satisfies the maximum

distance Dj =
∣∣∣ST − Sj

min

∣∣∣
Let us examine the non-Markov property of antifragility. Something that in-

curred hard times but did not fall apart is giving us information about its solidity,
compared to something that has not been subjected to such stressors.

(The Markov Property for, say, a Brownian Motion XN |{X1 ,X2 ,...XN−1}= XN |{XN−1} ,
that is the last realization is the only one that matters. Now if we take fat tailed
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brownian motion in the real world
 
 
 

 
 
Introduction: A Garlic-Oriented Meeting 
 
The first time I met Emanuel Derman, it was in the summer of 1996, at Uncle 
Nick's on 48th street and 9th Avenue. Stan Jonas paid, I remember (it is 
sometimes easier to remember who paid than the exact conversation). Derman 
and Dupire had come up with the local volatility model and I was burning to 
talk to Emanuel about it. I was writing Dynamic Hedging and in the middle of 
an intense intellectual period (I only experienced the same intellectual 
intensity in 2005-2006 as I was writing The Black Swan). I was tortured with one 
aspect to the notion of volatility surface. I could not explain it then. I will try 
now. 
First, note the following. Local volatility does not mean what you expect 
volatility to be along a stochastic sample path that delivers a future price-
time pair. It is not necessarily the mean square variation along a sample path. 
Nor is it the expected mean-square variation along a sample path that allows 
you to break-even on a dynamic hedge. It is the process that would provide a 
break even P/L for a strategy. 
The resulting subtelty will take more than one post to explain (or I may expand 
in Dynamic Hedging 2). But I will try to explain as much as I can right here. 
The first problem is that options are not priced off a mean-square variation in 

Figure 11.2: The recovery theorem
requires the pricing kernel to be tran-
sition independent. So the forward
kernel at S2 depends on the path. Im-
plied vol at S2 via S1b is much lower
than implied vol at S2 via S1a.

models, such as stochastic volatility processes, the properties of the system are
Markov, but the history of the past realizations of the process matter in determining
the present variance.)

Take M realizations of a Brownian Bridge process pinned at St0= 100 and ST=
120, sampled with N periods separated by ∆t, with the sequence S, a collection of
Brownian-looking paths with single realizations indexed by j ,

Sj
i =
((

Sj
i∆t+t0

)N

i=0

)M

j=1

Take m∗ = minj mini§
j
i and

{
j : min Sj

i = m∗
}

Take 1) the sample path with the most direct route (Path 1) defined as its lowest
minimum , and 2) the one with the lowest minimum m∗ (Path 2). The state of
the system at period T depends heavily on whether the process ST exceeds its
minimum (Path 2), that is whether arrived there thanks to a steady decline, or rose
first, then declined.

If the properties of the process depend on (ST- m*), then there is path depen-
dence. By properties of the process we mean the variance, projected variance in,
say, stochastic volatility models, or similar matters.

11.2 sp and path dependence (incomplete)

For time series sampled at (t0, t0+∆t, ..., t ≡ t0+n∆t), the minimum distance δ:

S∗ (t0, t, ∆t) ≡ min
(

Si∆t+t0 −min
(
Sj∆t+t0

)N
j=i+1

)N

i=0

We have the stopping time {τ : Sτ = S∗ (t0, t, ∆t)} and the distance from the
worst becomes δ (t0, t, ∆t) ≡ St − Sτ
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11.3 brownian motion in the real world
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Figure 11.3: C(n), Gaus-
sian Case

11.3 brownian motion in the real world

We mentioned in the discussion of the Casanova problem that stochastic calculus
requires a certain class of distributions, such as the Gaussian. It is not as we expect
because of the convenience of the smoothness in squares (finite ∆x2), rather because
the distribution conserves across time scales. By central limit, a Gaussian remains
a Gaussian under summation, that is sampling at longer time scales. But it also
remains a Gaussian at shorter time scales. The foundation is infinite dividability.

The problems are as follows:

The results in the literature are subjected to the constaints that the Martingale M
is member of the subset (H2) of square integrable martingales, supt≤TE[M2] < ∞

We know that the restriction does not work for lot or time series.

We know that, with θ an adapted process, without
∫ T

0 θ2
s ds < ∞ we can’t get

most of the results of Ito’s lemma.

Even with
∫ T

o dW2< ∞, The situation is far from solved because of powerful, very
powerful presamptotics.

Hint: Smoothness comes from
∫ T

o dW2 becoming linear to T at the continuous
limit –Simply dt is too small in front of dW
Take the normalized (i.e. sum=1) cumulative variance (see Bouchaud & Potters),

C(n) =
∑n

i=1(W[i∆t]−W[(i− 1)∆t])2

∑
T/∆t
i=1 (W[i∆t]−W[(i− 1)∆t])2

.

Let us play with a finite variance situations.
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brownian motion in the real world

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Figure 11.4: α = 1.16
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Figure 11.5: α = 3: Even fi-
nite variance does not lead
to the smoothing of dis-
continuities except in the
infinitesimal limit, another
way to see failed asymp-
totes.
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11.4 stochastic processes and nonanticipating strategies

Figure 11.6: Asymmetry between a
convex and a concave strategy

11.4 stochastic processes and nonanticipating strate-
gies

There is a difference between the Stratonovich and Ito’s integration of a functional
of a stochastic process. But there is another step missing in Ito: the gap between
information and adjustment.

11.5 finite variance not necessary for anything
ecological (incl. quant finance)

[Summary of article in Complexity (2008)
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12 T H E F O U R T H Q U A D R A N T
" S O L U T I O N "

Chapter Summary 12: A less technical demarcation between Black Swan
Domains and others.

Let us return to M[A, f (x)] of Chapter 3. A quite significant result is that M[A,xn]
may not converge, in the case of, say power laws with exponent α < n, but
M [A, xm] where m < n, would converge. Well, where the integral

∫ ∞
−∞ f (x)p(x) dx

does not exist, by “clipping tails”, we can make the payoff integrable. There are
two routes;

1) Limiting f (turning an open payoff to a binary): when f (x) is a constant as
in a binary

∫ ∞
−∞ Kp(x)dx will necessarily converge if p is a probability distribution.

2) Clipping tails: (and this is the business we will deal with in Antifragile, Part
II), where the payoff is bounded, A = [L, H], or the integral

∫ H
L f (x)p(x)dx will

necessarily converge.

12.1 two types of decisions

M0 depends on the 0th moment, that is, “Binary”, or simple, i.e., as we saw, you just
care if something is true or false. Very true or very false does not matter. Someone
is either pregnant or not pregnant. A statement is “true” or “false” with some
confidence interval. (I call these M0 as, more technically, they depend on the zeroth
moment, namely just on probability of events, and not their magnitude —you just
care about “raw” probability). A biological experiment in the laboratory or a bet
with a friend about the outcome of a soccer game belong to this category.

Table 19: The Four Quadrants

Simple pay-
offs

Complex
payoffs

Distribution 1

(“thin tailed”)

First Quad-
rant
Extremely
Safe

Second
Quadrant:
Safe

Distribution 2

(no or unknown
characteristic
scale)

Third Quad-
rant: Safe

Fourth
Quadrant:
Dangers

237



the fourth quadrant "solution"

M1
+Complex, depend on the 1st or higher moments. You do not just care of the

frequency—but of the impact as well, or, even more complex, some function of the
impact. So there is another layer of uncertainty of impact. (I call these M1+, as
they depend on higher moments of the distribution). When you invest you do not
care how many times you make or lose, you care about the expectation: how many
times you make or lose times the amount made or lost.

Two types of probability structures:
There are two classes of probability domains—very distinct qualitatively and

quantitatively. The first, thin-tailed: Mediocristan", the second, thick tailed Extrem-
istan:

Table 20: Tableau of Decisions

Mo
“True/False”

f(x)=0

M1
Expectations
LINEAR PAYOFF
f(x)=1

M2+

NONLINEAR PAY-
OFF
f(x) nonlinear(= x2,
x3, etc.)

Medicine (health
not epidemics)

Finance : nonlever-
aged Investment Derivative payoffs

Psychology exper-
iments

Insurance, mea-
sures of expected
shortfall

Dynamically
hedged portfolios

Bets (prediction
markets)

General risk man-
agement

Leveraged portfo-
lios (around the
loss point)

Binary/Digital
derivatives Climate

Cubic payoffs (strips
of out of the money
options)

Life/Death Economics (Policy) Errors in analyses of
volatility

Security: Terror-
ism, Natural catas-
trophes

Calibration of non-
linear models

Epidemics
Expectation
weighted by nonlin-
ear utility

Casinos
Kurtosis-based po-
sitioning (“volatility
trading”)

Conclusion The 4th Quadrant is mitigated by changes in exposures. And expo-
sures in the 4th quadrant can be to the negative or the positive, depending on if the
domain subset A exposed either on the left or on the right.
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13 R I S K A N D P R E C A U T I O N

Chapter Summary 13: We present the difference between ruin problems, par-
ticularly when systemic, and other risk management of a more computable
nature.

A more technical exposition of the fourth quadrant, in which we replace the 4th
Q with the precautionary principle. Simply one need to "show" that a given policy
does not belong to IV in Table 21, or, alternatively exert more vigilance there.

Table 21: The Four Quadrants and Exposure Classes HA and HB

Z = ∑i ωi fi(Xi) ∈ HA Z = ∑i ωi fi(Xi) ∈ HB

X ∈ A I II

X ∈ B III IV: Domain of PP

I: First Quadrant, safe
II: Second Quadrant, safe but calculated risks
III: Quadrant III, safe but rigorous risk management
IV: Quadrant Where PP should be exercized

Let X = (Xi)1≤i≤n be a sequence of random variables with support in (R+), with
cumulative distribution function F. Let Sn = Σn

i=1xi and Mn = max1≤i≤n xi. Without
making any statement as to the probability distribution nor independence:

Definition 13.1 (Membership of a r.v. in Class of Fat Tailed, convolution criterion).
B = {X ∈ B : limx→+∞

1−F∗2(x)
1−F(x) = 2}, where F∗2 = F′ ∗ F is the cumulative distribution

of X1 + X2, the sum of two copies of X.
Or, equivalently, For a given n ≥ 2, a) limx→∞

P(Sn>x)
P(X>x) = n, b) limx→∞

P(Sn>x)
P(Mn>x) = 1.

Definition 13.2 (Membership in Class of Thin Tailed).
A = {X ∈ A : X /∈ B}

Let HX ∈ (0, ∞) be a predefined "ruin" barrier associated with exposure to vari-
able X and Z be an n-summed of mixing of functions of variables X in quantities
ωi with fi : (0, ∞)→ [0, Hi) as the loss(risk) function:

Definition 13.3 (NonSystemic Risk, Strong Condition).

HA = {Z ∈ HA : ∑ ωimax(Xi∈R+ ,i≤n) ( fi(Xi)) < HX}. (13.1)
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risk and precaution

13.0.1 Stopping time equivalence

We used a static representation instead of stopping time for clarity. Let τ = {inf t :
f (Xi,t) > Li} be the stopping time where Li is the local aborbing barrier. In that
case in Equation 13.1, replace max(Xi∈R+ ,i≤n) ( fi(Xi)) with ( fi(Xi,τ)).

13.0.2 Sign of exposure

If we choose to indicate deviations as negative values of the variable x, the same
result holds by symmetry for extreme negative values, replacing x → +∞ with x →
−∞ (and using the complementary of the exceedance probability). For two-tailed
variables, we can separately consider x+ and x− positive and negative domains.

13.0.3 layering

HX is a layer attached specifically to variable X, for which "ruin" is specifically
defined. In analyzing systems, we may have telescope-style multi-layering. This is
for an isolated level (say ruin for a given continent, industry), etc.

13.1 what is the precautionary principle
The precautionary principle (PP) states that if an action or policy has a suspected
risk of causing severe harm to the public domain (affecting general health or the
environment globally), the action should not be taken in the absence of scientific
near-certainty about its safety. Under these conditions, the burden of proof about
absence of harm falls on those proposing an action, not those opposing it. PP is
intended to deal with uncertainty and risk in cases where the absence of evidence
and the incompleteness of scientific knowledge carries profound implications and
in the presence of risks of "black swans", unforeseen and unforeseable events of
extreme consequence.

This non-naive version of the PP allows us to avoid paranoia and paralysis by con-
fining precaution to specific domains and problems. Here we formalize PP, placing
it within the statistical and probabilistic structure of “ruin” problems, in which a
system is at risk of total failure, and in place of risk we use a formal"fragility" based
approach. In these problems, what appear to be small and reasonable risks accumu-
late inevitably to certain irreversible harm. Traditional cost-benefit analyses, which
seek to quantitatively weigh outcomes to determine the best policy option, do not
apply, as outcomes may have infinite costs. Even high-benefit, high-probability
outcomes do not outweigh the existence of low probability, infinite cost options—
i.e. ruin. Uncertainties result in sensitivity analyses that are not mathematically
well behaved. The PP is increasingly relevant due to man-made dependencies that
propagate impacts of policies across the globe. In contrast, absent humanity the
biosphere engages in natural experiments due to random variations with only local
impacts.

The aim of the precautionary principle (PP) is to prevent decision makers from
putting society as a whole—or a significant segment of it—at risk from the unex-
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13.2 why ruin is serious business

pected side effects of a certain type of decision. The PP states that if an action or
policy has a suspected risk of causing severe harm to the public domain (such as
general health or the environment), and in the absence of scientific near-certainty
about the safety of the action, the burden of proof about absence of harm falls on
those proposing the action. It is meant to deal with effects of absence of evidence
and the incompleteness of scientific knowledge in some risky domains.1

We believe that the PP should be evoked only in extreme situations: when the
potential harm is systemic (rather than localized) and the consequences can involve
total irreversible ruin, such as the extinction of human beings or all life on the
planet.

Standard Risk Management Precautionary Approach

localized harm systemic ruin
nuanced cost-benefit avoid at all costs
statistical fragility based
statistical probabilistic non-statistical
variations ruin
convergent probabibilities divergent probabilities
recoverable irreversible
independent factors interconnected factors
evidence based precautionary
thin tails fat tails
bottom-up, tinkering top-down engineered
evolved human-made

Table 22: Two different types of risk and their respective characteristics compared

13.2 why ruin is serious business

13.3 skepticism and precaution
We show in Figures 13.2 and 13.3 that an increase in uncertainty leads to an increase
in the probability of ruin, hence "skepticism" is that its impact on decisions should
lead to increased, not decreased conservatism in the presence of ruin. More skep-
ticism about models implies more uncertainty about the tails, which necessitates
more precaution about newly implemented techniques, or larger size of exposures.
As we said, Nature might not be smart, but its longer track record means smaller
uncertainty in following its logic.

Mathematically, more uncertainty about the future –or about a model –increases
the scale of the distribution, hence thickens the "left tail" (as well as the "right one")

1 The Rio Declaration on Environment and Development presents it as follows: "In order to protect the
environment, the precautionary approach shall be widely applied by States according to their capabili-
ties. Where there are threats of serious or irreversible damage, lack of full scientific certainty shall not
be used as a reason for postponing cost-effective measures to prevent environmental degradation."
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risk and precaution
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Figure 13.1: Why Ruin
is not a Renewable Re-
source. No matter how
small the probability, in
time, something bound to
hit the ruin barrier is about
guaranteed to hit it.

Low model 

uncertainty

High model 

uncertainty

Ruin

Ruin 

probability
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Figure 13.2: The more
uncertain or skeptical one
is of "scientific" models
and projections, the higher
the risk of ruin, which flies
in the face of the argument
of the style "skeptical
of climate models". No
matter how increased the
probability of benefits,
ruin as an absorbing
barrier, i.e. causing ex-
tinction without further
recovery, can more than
cancels them out. This
graph assumes changes
in uncertainty without
changes in benefits (a
mean-preserving sensitiv-
ity) –the next one isolates
the changes in benefits.

Figure 13.3: The graph
shows the asymmetry
between benefits and
harm and the effect on
the ruin probabilities.
Shows the effect on ruin
probability of changes the
Information Ratio, that is,
expected benefit

uncertainty (or signal
divided by noise). Benefits
are small compared to neg-
ative effects. Three cases
are considered, two from
Extremistan: extremely
fat-tailed (α = 1), and less
fat-tailed (α = 2), and one
from Mediocristan.
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13.4 fallacious arguments in risk management

which raises the potential ruin. The survival probability is reduced no matter what
takes place in the right tail. Hence skepticim about climate models should lead to
more precautionary policies.

In addition, such increase uncertainty matters far more in Extremistan –and has
benign effects in Mediocristan. Figure 13.3 shows th asymmetries between costs
and benefits as far as ruin probabilities, and why these matter more for fat-tailed
domains than thin-tailed ones. In thin-tailed domains, an increase in uncertainty
changes the probability of ruin by several orders of magnitude, but the effect re-
mains small: from say 10−40 to 10−30 is not quite worrisome. In fat-tailed domains,
the effect is sizeable as we start with a substantially higher probability of ruin
(which is typically underestimated, see [? ]).

13.4 fallacious arguments in risk management

13.4.1 Crossing the road (the paralysis fallacy)

Many have countered against risk measures with “nothing is ever totally safe.” “I
take risks crossing the road every day, so according to you I should stay home in a
state of paralysis.” The answer is that we don’t cross the street blindfolded, we use
sensory information to mitigate risks and reduce exposure to extreme shocks.2

Even more importantly, the probability distribution of death from road accidents
at the population level is thin-tailed; I do not incur the risk of generalized human
extinction by crossing the street—a human life is bounded in duration and its un-
avoidable termination is an inherent part of the bio-social system. The error of my
crossing the street at the wrong time and meeting an untimely demise in general
does not cause others to do the same; the error does not spread. If anything, one
might expect the opposite effect, that others in the system benefit from my mistake
by adapting their behavior to avoid exposing themselves to similar risks. Equating
risks a person takes with his or her own life with risking the existence of civiliza-
tion is an inappropriate ego trip. In fact, the very idea of the PP is to avoid such a
frivolous focus.

The paralysis argument is often used to present that precaution as incompatible
with progress. This is untrue: tinkering, bottom-up progress where mistakes are
bounded is how progress has taken place in history. The non-naive PP simply
asserts that the risks we take as we innovate must not extend to the entire system;
local failure serves as information for improvement. Global failure does not.

This fallacy illustrates the misunderstanding between systemic and idiosyncratic
risk in the literature. Individuals are fragile and mortal. The idea of sustainability
is to stike to make systems as close to immortal as possible.

13.4.2 The Psychology of Risk and Thick Tailed Distributions

One concern about the utility of the PP is that its evocation may become common-
place because of risk aversion. Is it true that people overreact to small probabilities
and the PP would feed into human biases? While we have carefully identified

2 Actually the actuarial risk of death for pedestrians is one in 47, 000 years, I thank Hanoz Kalwachwala.
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risk and precaution

the scope of the domain of applicability of the PP, it is also helpful to review the
evidence of risk aversion, which we find not to be based upon sound studies.

Certain empirical studies appear to support the existence of a bias toward risk
aversion, claiming evidence that people choose to avoid risks that are beneficial,
inconsistent with cost-benefit analyses. The relevant experiments ask people ques-
tions about single probability events, showing that people overreact to small prob-
abilities. However, those researchers failed to include the consequences of the asso-
ciated events which humans underestimate. Thus, this empirical strategy as a way
of identifying effectiveness of response to risk is fundamentally flawed [? ].

The proper consideration of risk involves both probability and consequence, which
should be multiplied together. Consequences in many domains have thick tails, i.e.
much larger consequences can arise than are considered in traditional statistical
approaches. Overreacting to small probabilities is not irrational when the effect
is large, as the product of probability and harm is larger than expected from the
traditional treatment of probability distributions.

13.4.3 The Loch Ness fallacy

Many counter that we have no evidence that the Loch Ness monster doesn’t ex-
ist, and, to take the argument of evidence of absence being different from absence of
evidence, we should act as if the Loch Ness monster existed. The argument is a
corruption of the absence of evidence problem.

The relevant question is whether the existence of the Loch Ness monster has im-
plications for decisions about actions that are being taken. We are not considering a
decision to swim in the Loch Ness. If the Loch Ness monster did exist, there would
still be no reason to invoke the PP, as the harm he might cause is limited in scope
to Loch Ness itself, and does not present the risk of ruin.

13.4.4 The fallacy of misusing the naturalistic fallacy

Some people invoke “the naturalistic fallacy,” a philosophical concept that is limited
to the moral domain. According to this critique, we should not claim that natural
things are necessarily good; human innovation can be equally valid. We do not
claim to use nature to derive a notion of how things "ought" to be organized. Rather,
as scientists, we respect nature for the extent of its experimentation. The high level
of statistical significance given by a very large sample cannot be ignored. Nature
may not have arrived at the best solution to a problem we consider important,
but there is reason to believe that it is smarter than our technology based only on
statistical significance.

The question about what kinds of systems work (as demonstrated by nature)
is different than the question about what working systems ought to do. We can
take a lesson from nature—and time—about what kinds of organizations are ro-
bust against, or even benefit from, shocks, and in that sense systems should be
structured in ways that allow them to function. Conversely, we cannot derive the
structure of a functioning system from what we believe the outcomes ought to be.

To take one example, Cass Sunstein—who has written an article critical of the
PP [? ]—claims that there is a "false belief that nature is benign." However, his
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13.4 fallacious arguments in risk management

conceptual discussion fails to distinguish between thin and fat tails, local harm and
global ruin. The method of analysis misses both the statistical significance of nature
and the fact that it is not necessary to believe in the perfection of nature, or in its
"benign" attributes, but rather in its track record, its sheer statistical power as a risk
evaluator and as a risk manager in avoiding ruin.

13.4.5 The "Butterfly in China" fallacy

The statement “if I move my finger to scratch my nose, by the butterfly-in-China
effect, owing to non-linearities, I may terminate life on earth," is known to be flawed.
The explanation is not widely understood. The fundamental reason arises because
of the existence of a wide range in levels of predictability and the presence of a large
number of fine scale degrees of freedom for every large scale one [? ]. Thus, the
traditional deterministic chaos, for which the butterfly effect was named, applies
specifically to low dimensional systems with a few variables in a particular regime.
High dimensional systems, like the earth, have large numbers of fine scale variables
for every large scale one. Thus, it is apparent that not all butterfly wing flaps can
cause hurricanes. It is not clear that any one of them can, and, if small perturbations
can influence large scale events, it happens only under specific conditions where
amplification occurs.

Empirically, our thesis rebuts the butterfly fallacy with the argument that, in the
aggregate, nature has experienced trillions of small variations and yet it survives.
Therefore, we know that the effects of scratching one’s nose fall into the thin tailed
domain and thus do not warrant the precautionary principle.

As described previously, barriers in natural systems lead to subsystems having
a high-degree of independence. Understanding how modern systems with a high-
degree of connectivity have cascading effects is essential for understanding when it
is and isn’t appropriate to use the PP.

13.4.6 The potato fallacy

Many species were abruptly introduced into the Old World starting in the 16th
Century that did not cause environmental disasters (perhaps aside from diseases
affecting Native Americans). Some use this observation in defense of GMOs. How-
ever, the argument is fallacious at two levels:

First, by the fragility argument, potatoes, tomatoes and similar "New World"
goods were developed locally through progressive, bottom-up tinkering in a com-
plex system in the context of its interactions with its environment. Had they had an
impact on the environment, it would have caused adverse consequences that would
have prevented their continual spread.

Second, a counterexample is not evidence in the risk domain, particularly when
the evidence is that taking a similar action previously did not lead to ruin. Lack
of ruin due to several or even many trials does not indicate safety from ruin in the
next one. This is also the Russian roulette fallacy, detailed below.
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13.4.7 The Russian roulette fallacy (the counterexamples in the risk domain)

The potato example, assuming potatoes had not been generated top-down by some
engineers, would still not be sufficient. Nobody says "look, the other day there was
no war, so we don’t need an army," as we know better in real-life domains. Nobody
argues that a giant Russian roulette with many barrels is "safe" and a great money
making opportunity because it didn’t blow up someone’s brains last time.

There are many reasons a previous action may not have led to ruin while still
having the potential to do so. If you attempt to cross the street with a blindfold and
earmuffs on, you may make it across, but this is not evidence that such an action
carries no risk.

More generally, one needs a large sample for claims of absence of risk in the pres-
ence of a small probability of ruin, while a single “n = 1" example would be suffi-
cient to counter the claims of safety—this is the Black Swan argument [? ]. Simply
put, systemic modifications require a very long history in order for the evidence of
lack of harm to carry any weight.

13.4.8 The Carpenter Fallacy

Risk managers skeptical of the understanding of risk of biological processes, such as
GMOs, by the experts are sometimes asked "are you a biologist?" But nobody asks
a probabilist dealing with roulette sequences if he is a carpenter. To understand
the gambler’s ruin problem by roulette betting, we know to ask a probabilist, not a
carpenter. No amount of expertise in carpentry can replace rigor in understanding
the properties of long sequences of small probability bets. Likewise, no amount of
expertise in the details of biological processes can be a substitute for probabilistic
rigor.

The context for evaluating risk is the extent of knowledge or lack of knowledge.
Thus, when considering GMO risks, a key question is what is the extent to which
we know the impacts of genetic changes in organisms. Claims that geneticists
know these consequences as a basis for GMOs do not recognize either that their
knowledge is not complete in its own domain nor is genetics complete as a body
of knowledge. Geneticists do not know the developmental, physiological, medical,
cognitive and environmental consequences of genetic changes in organisms. In-
deed, most of these are not part of their training or competency. Neither are they
trained in recognizing the impact of the limitations of knowledge on risk.

Consistent with these points, the track record of the experts in understanding bi-
ological and medical risks has been extremely poor. We need policies to be robust
to such miscalculations. The "expert problem" in medicine by which experts mis-
characterize the completeness of their own knowledge is manifest in a very poor
historical record of risks taken with innovations in biological products. These range
from biofuels to transfat to nicotine, etc. Consider the recent major drug recalls such
as Thalidomide, Fen-Phen, Tylenol and Vioxx—all of these show blindness on the
part of the specialist to large scale risks associated with absence of knowlege, i.e.,
Black Swan events. Yet most of these risks were local and not systemic (with the
exception of biofuel impacts on global hunger and social unrest). Since systemic
risks would result in a recall happening too late, we need the strong version of the
PP.
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13.4 fallacious arguments in risk management

13.4.9 The technological salvation fallacy

Iatrogenics is harm done by a healer despite positive intentions, see Appendix A
for a list of innovations in care that have extensive documentation of adverse conse-
quences. Each of these underwent best practices testing that did not reveal the iatro-
genic consequences prior to widespread application. The controlled tests that are
used to evaluate innovations for potential harm cannot replicate the large number
of conditions in which interventions are applied in the real world. Adverse conse-
quences are exposed only by extensive experience with the combinatorial number
of real world conditions. Natural, i.e. evolutionary, selection implements as a
strategy the use of selection of lack of harm under such conditions in a way that
bounds the consequences because the number of replicates is increased only grad-
ually during the process in which success is determined. In contrast, traditional
engineering of technological solutions does not. Thus, the more technological a
solution to a current problem—the more it departs from solutions that have under-
gone evolutionary selection—the more exposed one becomes to iatrogenics owing
to combinatorial branching of conditions with adverse consequences.

Our concern here isn’t mild iatrogenics, but the systemic case.

13.4.10 The pathologization fallacy

Today many mathematical or conceptual models that are claimed to be rigorous are
based upon unvalidated and incorrect assumptions and are not robust to changes
in these assumptions. Such models are deemed rational in the sense that they
are logically derived from their assumptions, and, further, can be used to assess
rationality by examining deviations from such models, as indicators of irrationality.
Except that it is often the modeler who is using an incomplete representation of
the reality, hence using an erroneous benchmark for rationality. Often the modelers
are not familiar with the dynamics of complex systems or use antiquated statistical
methods that do not take into account fat-tails and make inferences that would not
be acceptable under different classes of probability distributions. Many biases, such
as the ones used by Cass Sunstein (mentioned above), about the overestimation
of the probabilities of rare events in fact correspond to the testers using a bad
probability model that is thin-tailed. See Ref. [? ] for a deeper discussion.

It has became popular to claim irrationality for GMO and other skepticism on the
part of the general public—not realizing that there is in fact an "expert problem"
and such skepticism is healthy and even necessary for survival. For instance, in
The Rational Animal [? ], the authors pathologize people for not accepting GMOs
although "the World Health Organization has never found evidence of ill effects," a
standard confusion of evidence of absence and absence of evidence. Such patholo-
gizing is similar to behavioral researchers labeling hyperbolic discounting as "irra-
tional" when in fact it is largely the researcher who has a very narrow model and
richer models make the "irrationality" go away.

These researchers fail to understand that humans may have precautionary prin-
ciples against systemic risks, and can be skeptical of the untested consequences
of policies for deeply rational reasons, even if they do not express such fears in
academic format.
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14 S K I N I N T H E G A M E A N D R I S K
TA K I N G

Chapter Summary 14: Standard economic theory makes an allowance for the
agency problem, but not the compounding of moral hazard in the presence
of informational opacity, particularly in what concerns high-impact events
in fat tailed domains (under slow convergence for the law of large numbers).
Nor did it look at exposure as a filter that removes nefarious risk takers from
the system so they stop harming others. (In the language of probability, skin
in the game creates an absorbing state for the agent, not just the principal).
But the ancients did; so did many aspects of moral philosophy. We propose
a global and morally mandatory heuristic that anyone involved in an action
which can possibly generate harm for others, even probabilistically, should
be required to be exposed to some damage, regardless of context. While
perhaps not sufficient, the heuristic is certainly necessary hence mandatory.
It is supposed to counter voluntary and involuntary risk hiding − and risk
transfer − in the tails.

The literature in risk, insurance, and contracts has amply dealt with the notion
of information asymmetry (see Ross, 1973, Grossman and Hart, 1983, 1984, Tirole
1988, Stiglitz 1988), but not with the consequences of deeper information opacity
(in spite of getting close, as in HÃűlmstrom, 1979), by which tail events are impos-
sible to figure out from watching time series and external signs: in short, in the
"real world" (Taleb, 2013), the law of large numbers works very slowly, or does not
work at all in the time horizon for operators, hence statistical properties involving
tail events are completely opaque to the observer. And the central problem that
is missing behind the abundant research on moral hazard and information asym-
metry is that these rare, unobservable events represent the bulk of the properties
in some domains. We define a fat tailed domain as follows: a large share of the
statistical properties come from the extremum; for a time series involving n obser-
vations, as n becomes large, the maximum or minimum observation will be of the
same order as the sum. Excursions from the center of the distributions happen
brutally and violently; the rare event dominates. And economic variables are ex-
tremely fat tailed (Mandelbrot, 1997). Further, standard economic theory makes an
allowance for the agency problem, but not for the combination of agency problem,
informational opacity, and fat-tailedness. It has not yet caught up that tails events
are not predictable, not measurable statistically unless one is causing them, or in-
volved in increasing their probability by engaging in a certain class of actions with
small upside and large downside. (Both parties may not be able to gauge probabil-
ities in the tails of the distribution, but the agent knows which tail events do not
affect him.) Sadly, the economics literature’s treatment of tail risks , or "peso prob-
lems" has been to see them as outliers to mention en passant but hide under the rug,
or remove from analysis, rather than a core center of the modeling and decision-
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making, or to think in terms of robustness and sensitivity to unpredictable events.
Indeed, this pushing under the rug the determining statistical properties explains
the failures of economics in mapping the real world, as witnessed by the inability
of the economics establishment to see the accumulation of tail risks leading up to
the financial crisis of 2008 (Taleb, 2009). The parts of the risk and insurance litera-
ture that have focused on tail events and extreme value theory, such as Embrechts
(1997), accepts the large role of the tails, but then the users of these theories (in the
applications) fall for the logical insonsistency of assuming that they can be figured
out somehow: naively, since they are rare what do we know about them? The law
of large numbers cannot be of help. Nor do theories have the required robustness.
Alarmingly, very little has been done to make the leap that small calibration errors
in models can change the probabilities (such as those involving the risks taken in
Fukushima’s nuclear project) from 1 in 106 to 1 in 50.

Add to the fat-tailedness the asymmetry (or skewness) of the distribution, by
which a random variable can take very large values on one side, but not the other.
An operator who wants to hide risk from others can exploit skewness by creating
a situation in which he has a small or bounded harm to him, and exposing others
to large harm; thus exposing others to the bad side of the distributions by fooling
them with the tail properties.

Finally, the economic literature focuses on incentives as encouragement or deter-
rent, but not on disincentives as potent filters that remove incompetent and nefari-
ous risk takers from the system. Consider that the symmetry of risks incurred on
the road causes the bad driver to eventually exit the system and stop killing oth-
ers. An unskilled forecaster with skin-in-the-game would eventually go bankrupt
or out of business. Shielded from potentially (financially) harmful exposure, he
would continue contributing to the buildup of risks in the system. 1

Hence there is no possible risk management method that can replace skin in
the game in cases where informational opacity is compounded by informational
asymmetry viz. the principal-agent problem that arises when those who gain the
upside resulting from actions performed under some degree of uncertainty are
not the same as those who incur the downside of those same acts2. For example,
bankers and corporate managers get bonuses for positive "performance", but do
not have to pay out reverse bonuses for negative performance. This gives them
an incentive to bury risks in the tails of the distribution, particularly the left tail,
thereby delaying blowups.

The ancients were fully aware of this incentive to hide tail risks, and implemented
very simple but potent heuristics (for the effectiveness and applicability of fast
and frugal heuristics both in general and in the moral domain, see Gigerenzer,
2010). But we find the genesis of both moral philosophy and risk management
concentrated within the same rule 3 . About 3,800 years ago, Hammurabi’s code

1 The core of the problem is as follows. There are two effects: "crooks of randomness" and "fooled of
randomness" (Nicolas Tabardel, private communication). Skin in the game eliminates the first effect in
the short term (standard agency problem), the second one in the long term by forcing a certain class of
harmful risk takers to exit from the game.

2 Note that Pigovian mechanisms fail when, owing to opacity, the person causing the harm is not easy to
identify

3 Economics seems to be born out of moral philosophy (mutating into the philosophy of action via deci-
sion theory) to which was added naive and improper 19th C. statistics (Taleb, 2007, 2013). We are trying
to go back to its moral philosophy roots, to which we add more sophisticated probability theory and
risk management.
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specified that if a builder builds a house and the house collapses and causes the
death of the owner of the house, that builder shall be put to death. This is the best
risk-management rule ever.

What the ancients understood very well was that the builder will always know
more about the risks than the client, and can hide sources of fragility and improve
his profitability by cutting corners. The foundation is the best place to hide such
things. The builder can also fool the inspector, for the person hiding risk has a
large informational advantage over the one who has to find it. The same absence
of personal risk is what motivates people to only appear to be doing good, rather
than to actually do it.

Note that Hammurabi’s law is not necessarily literal: damages can be "converted"
into monetary compensation. Hammurabi’s law is at the origin of the lex talonis
("eye for eye", discussed further down) which, contrary to what appears at first
glance, it is not literal. Tractate Bava Kama in the Babylonian Talmud 4, builds a
consensus that "eye for eye" has to be figurative: what if the perpetrator of an eye
injury were blind? Would he have to be released of all obligations on grounds that
the injury has already been inflicted? Wouldn’t this lead him to inflict damage to
other people’s eyesight with total impunity? Likewise, the Quran’s interpretation,
equally, gives the option of the injured party to pardon or alter the punishment5.
This nonliteral aspect of the law solves many problems of asymmetry under spe-
cialization of labor, as the deliverer of a service is not required to have the same
exposure in kind, but incur risks that are costly enough to be a disincentive.

The problems and remedies are as follows:
First, consider policy makers and politicians. In a decentralized system, say mu-

nicipalities, these people are typically kept in check by feelings of shame upon
harming others with their mistakes. In a large centralized system, the sources of
error are not so visible. Spreadsheets do not make people feel shame. The penalty
of shame is a factor that counts in favour of governments (and businesses) that
are small, local, personal, and decentralized versus ones that are large, national or
multi-national, anonymous, and centralised. When the latter fail, everybody except
the culprit ends up paying the cost, leading to national and international measures
of endebtment against future generations or "austerity "6.These points against "big
government " models should not be confused with the standard libertarian argu-
ment against states securing the welfare of their citizens, but only against doing so
in a centralized fashion that enables people to hide behind bureaucratic anonymity.
Much better to have a communitarian municipal approach:in situations in which
we cannot enforce skin-in-the game we should change the system to lower the con-
sequences of errors.

Second, we misunderstand the incentive structure of corporate managers. Counter
to public perception, corporate managers are not entrepreneurs. They are not what
one could call agents of capitalism. Between 2000 and 2010, in the United States,
the stock market lost (depending how one measures it) up to two trillion dollars for
investors, compared to leaving their funds in cash or treasury bills. It is tempting
to think that since managers are paid on incentive, they would be incurring losses.

4 Tractate Bava Kama, 84a, Jerusalem: Koren Publishers, 2013.
5 Quran, Surat Al-Ma’idat, 45: "Then, whoever proves charitable and gives up on his right for reciprocation,

it will be an atonement for him." (our translation).
6 See McQuillan (2013) and Orr (2013); cf. the "many hands " problem discussed by Thompson (1987)
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Not at all: there is an irrational and unethical asymmetry. Because of the embed-
ded option in their profession, managers received more than four hundred billion
dollars in compensation. The manager who loses money does not return his bonus
or incur a negative one7.The built-in optionality in the compensation of corporate
managers can only be removed by forcing them to eat some of the losses8.

Third, there is a problem with applied and academic economists, quantitative
modellers, and policy wonks. The reason economic models do not fit reality (fat-
tailed reality) is that economists have no disincentive and are never penalized for
their errors. So long as they please the journal editors, or produce cosmetically
sound "scientific" papers, their work is fine. So we end up using models such
as portfolio theory and similar methods without any remote empirical or mathe-
matical reason. The solution is to prevent economists from teaching practitioners,
simply because they have no mechanism to exit the system in the event of caus-
ing risks that harm others. Again this brings us to decentralization by a system
where policy is decided at a local level by smaller units and hence in no need for
economists.

Fourth, the predictors. Predictions in socioeconomic domains don’t work. Pre-
dictors are rarely harmed by their predictions. Yet we know that people take more
risks after they see a numerical prediction. The solution is to ask —and only take
into account— what the predictor has done (what he has in his portfolio), or is
committed to doing in the future. It is unethical to drag people into exposures
without incurring losses. Further, predictors work with binary variables (Taleb and
Tetlock, 2013), that is, "true" or "false" and play with the general public misunder-
standing of tail events. They have the incentives to be right more often than wrong,
whereas people who have skin in the game do not mind being wrong more often
than they are right, provided the wins are large enough. In other words, predictors
have an incentive to play the skewness game (more on the problem in section 2).
The simple solution is as follows: predictors should be exposed to the variables
they are predicting and should be subjected to the dictum "do not tell people what
you think, tell them what you have in your portfolio" (Taleb, 2012, p.386) . Clearly
predictions are harmful to people as, by the psychological mechanism of anchoring,
they increases risk taking.

Fifth, to deal with warmongers, Ralph Nader has rightly proposed that those
who vote in favor of war should subject themselves (or their own kin) to the draft.

We believe Skin in the game is a heuristic for a safe and just society. It is even
more necessary under fat tailed environments. Opposed to this is the unethical
practice of taking all the praise and benefits of good fortune whilst disassociating
oneself from the results of bad luck or miscalculation. We situate our view within
the framework of ethical debates relating to the moral significance of actions whose
effects result from ignorance and luck. We shall demonstrate how the idea of skin
in the game can effectively resolve debates about (a) moral luck and (b) egoism

7 There can be situations of overconfidence by which the CEOs of companies bear a disproportionately
large amount of risk, by investing in their companies, as shown by Malmendier and Tate(2008, 2009),
and end up taking more risk because they have skin in the game. But it remains that CEOs have
optionality, as shown by the numbers above. Further, the heuristic we propose is necessary, but may
not be sufficient to reduce risk, although CEOs with a poor understanding of risk have an increased
probability of personal ruin.

8 We define "optionality" as an option-like situation by which an agent has a convex payoff, that is, has
more to gain than to lose from a random variable, and thus has a positive sensitivity to the scale of the
distribution, that is, can benefit from volatility and dispersion of outcomes.
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vs. altruism, while successfully bypassing (c) debates between subjectivist and
objectivist norms of action under uncertainty, by showing how their concerns are
of no pragmatic concern.

Reputational Costs in Opaque Systems: Note that our analysis includes costs of
reputation as skin in the game, with future earnings lowered as the result of a mis-
take, as with surgeons and people subjected to visible malpractice and have to live
with the consequences. So our concern is situations in which cost hiding is effective
over and above potential costs of reputation, either because the gains are too large
with respect to these costs, or because these reputation costs can be "arbitraged ",
by shifting blame or escaping it altogether, because harm is not directly visible. The
latter category includes bureaucrats in non-repeat environments where the delayed
harm is not directly attributable to them. Note that in many domains the payoff
can be large enough to offset reputational costs, or, as in finance and government,
reputations do not seem to be aligned with effective track record. (To use an evolu-
tionary argument, we need to avoid a system in which those who make mistakes
stay in the gene pool, but throw others out of it.)

Application of The Heuristic: The heuristic implies that one should be the first
consumer of one’s product, a cook should test his own food, helicopter repairper-
sons should be ready to take random flights on the rotorcraft that they maintain,
hedge fund managers should be maximally invested in their funds. But it does not
naively imply that one should always be using one’s product: a barber cannot cut
his own hair, the maker of a cancer drug should not be a user of his product unless
he is ill. So one should use one’s products conditionally on being called to use them.
However the rule is far more rigid in matters entailing sytemic risks: simply some
decisions should never be taken by a certain class of people.

Heuristic vs Regulation: A heuristic, unlike a regulation, does not require state
intervention for implementation. It is simple contract between willing individuals:
"I buy your goods if you use them", or "I will listen to your forecast if you are
exposed to losses if you are wrong" and would not require the legal system any
more than simple commercial transaction. It is bottom-up. (The ancients and more-
or-less ancients effectively understood the contingency and probabilistic aspect in
contract law, and asymmetry under opacity, as reflected in the works of Pierre de
Jean Olivi. Also note that the foundation of maritime law has resided in skin-the-
game unconditional sharing of losses, even as far in the past as 800 B.C. with the
Lex Rhodia, which stipulates that all parties involved in a transaction have skin in
the game and share losses in the event of damage. The rule dates back to the
Phoenician commerce and caravan trades among Semitic people. The idea is still
present in Islamic finance commercial law, see WardÃl’, 2010 .)

The rest of this chapter is organized as follows. First we present the epistemologi-
cal dimension of the hidden payoff, expressed using the mathematics of probability,
showing the gravity of the problem of hidden consequences. We conclude with the
notion of heuristic as simple "convex" rule, simple in its application.
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time

Changes in Value

Figure 14.1: The most effective way to maximize the expected payoff to the agent at the
expense of the principal.

14.1 payoff skewness and lack of skin-in-the-game

This section will analyze the probabilistic mismatch or tail risks and returns in the
presence of a principal-agent problem.

Transfer of Harm: If an agent has the upside of the payoff of the random variable,
with no downside, and is judged solely on the basis of past performance, then the incentive
is to hide risks in the left tail using a negatively skewed (or more generally, asymmetric)
distribution for the performance. This can be generalized to any payoff for which one does
not bear the full risks and negative consequences of one’s actions.

Let P(K, M) be the payoff for the operator over M incentive periods

(14.1)P(K, M) ≡ γ
M

∑
i=1

qt+(i−1)∆t

(
xj

t+i∆t − K
)

+1∆t(i−1)+t<τ

with X j = (xj
t+i∆t)

M
i=1 ∈ R, i.i.d. random variables representing the distribution of

profits over a certain period [t, t + i∆t], i ∈ N, ∆t ∈ R+ and K is a “hurdle”, τ=
inf
{

s :
(
∑z≤s xz

)
< xmin

}
is an indicator of stopping time when past performance

conditions are not satisfied (namely, the condition of having a certain performance
in a certain number of the previous years, otherwise the stream of payoffs termi-
nates, the game ends and the number of positive incentives stops). The constant
γ ∈(0,1) is an “agent payoff”, or compensation rate from the performance, which
does not have to be monetary (as long as it can be quantified as “benefit”). The
quantity qt+(i−1)∆t ∈ [1,∞) indicates the size of the exposure at times t+(i-1 ) ∆t
(because of an Ito lag, as the performance at period s is determined by q at a a
strictly earlier period < s)

Let
{

f j
}

be the family of probability measures f j of X j , j ∈ N. Each mea-
sure corresponds to certain mean/skewness characteristics, and we can split their
properties in half on both sides of a “centrality” parameter K, as the “upper” and
“lower” distributions. With some inconsequential abuse of notation we write dFj(x)

as f j(x) dx, so F+
j =
∫ ∞

K f j(x) dx and F−j =
∫ K
−∞ f j(x) dx , the “upper” and “lower” dis-
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tributions, each corresponding to certain conditional expectation E+
j ≡

∫ ∞
K x f j(x) dx∫ ∞
K f j(x) dx

and E−j ≡
∫ K
−∞ x f j(x) dx∫ K
−∞ f j(x) dx

.

Now define ν ∈ R+as a K-centered nonparametric measure of asymmetry, νj ≡
F−j
F+

j
, with values >1 for positive asymmetry, and <1 for negative ones. Intuitively,

skewness has probabilities and expectations moving in opposite directions: the
larger the negative payoff, the smaller the probability to compensate.

We do not assume a “fair game”, that is, with unbounded returns m ∈ (-∞,∞),
F+

j E+
j + F−j E−j = m, which we can write as

m+ + m− = m.

Simple assumptions of constant q and simple-condition stopping time Assume
q constant, q =1 and simplify the stopping time condition as having no loss larger
than −K in the previous periods, τ =inf{(t + i∆t)): x∆t(i−1)+t < K}, which leads to

E(P(K, M)) = γ E+
j ×E

(
M

∑
i=1

1t+i∆t<τ

)
(14.2)

Since assuming independent and identically distributed agent’s payoffs, the ex-
pectation at stopping time corresponds to the expectation of stopping time multi-

plied by the expected compensation to the agent γ Ej
+. And E

(
∑M

i=1 1∆t(i−1)+t<τ

)
=

E
((

∑M
i=1 1∆t(i−1)+t<τ

)
∧M

)
.

The expectation of stopping time can be written as the probability of success
under the condition of no previous loss:

E

(
M

∑
i=1

1t+i∆t<τ

)
=

M

∑
i=1

F+
j E(1x∆t(i−1)+t>K).

We can express the stopping time condition in terms of uninterrupted success
runs. Let ∑ be the ordered set of consecutive success runs ∑ ≡ {{F}, {SF}, {SSF}, ..., {(M−
1) consecutive S, F}}, where S is success and F is failure over period ∆t, with asso-
ciated corresponding probabilities:

{(1− F+
j ), F+

j

(
1− F+

j

)
, F+

j
2
(

1− F+
j

)
, ..., , F+

j
M−1

(
1− F+

j

)
},

M

∑
i=1

F+
j

(i−1)
(

1− F+
j

)
= 1− F+

j
M ' 1 (14.3)

For M large, since F+
j ∈ (0,1) we can treat the previous as almost an equality,

hence:
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E

(
M

∑
i=1

1t+(i−1)∆t<τ

)
=

M

∑
i=1

(i− 1) F+
j

(i−1)
(

1− F+
j

)
'

F+
j

1− F+
j

.

Finally, the expected payoff for the agent:

E (P(K, M)) ' γ E+
j

F+
j

1− F+
j

,

which increases by i) increasing E+
j , ii) minimizing the probability of the loss F−j ,

but, and that’s the core point, even if i) and ii) take place at the expense of m the
total expectation from the package.

Alarmingly, since E+
j = m−m−

F+
j

, the agent doesn’t care about a degradation of the

total expected return m if it comes from the left side of the distribution, m−. Seen
in skewness space, the expected agent payoff maximizes under the distribution j
with the lowest value of νj (maximal negative asymmetry). The total expectation
of the positive-incentive without-skin-in-the-game depends on negative skewness,
not on m.

Figure 14.2: Indy Mac, a failed firm during the subprime crisis (from Taleb 2009). It is
a representative of risks that keep increasing in the absence of losses, until the explosive
blowup.

Multiplicative q and the explosivity of blowups Now, if there is a positive corre-
lation between q and past performance, or survival length, then the effect becomes
multiplicative. The negative payoff becomes explosive if the allocation q increases
with visible profitability, as seen in Figure 2 with the story of IndyMac, whose risk
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kept growing until the blowup9. Consider that "successful" people get more at-
tention, more funds, more promotion. Having "beaten the odds" imparts a certain
credibility. In finance we often see fund managers experience a geometric explo-
sion of funds under management after perceived "steady" returns. Forecasters with
steady strings of successes become gods. And companies that have hidden risks
tend to outperform others in small samples, their executives see higher compensa-
tion. So in place of a constant exposure q, consider a variable one:

q∆t(i−1)+t = q ω(i),

where ω(i) is a multiplier that increases with time, and of course naturally collapses
upon blowup.

Equation 14.1 becomes:

P(K, M) ≡ γ
M

∑
i=1

q ω(i)
(

xj
t+i∆t − K

)
+1t+(i−1)∆t<τ , (14.4)

and the expectation, assuming the numbers of periods, M is large enough

E(P(K, M)) = γ E+
j q E

(
M

∑
i=1

ω(i) 1∆t(i−1)+t<τ

)
. (14.5)

Assuming the rate of conditional growth is a constant r ∈ [0,∞) , and making the
replacement ω(i)≡ eri, we can call the last term in equation 14.5 the multiplier of
the expected return to the agent:

(14.6)E

(
M

∑
i=1

eir1∆t(i−1)+t<τ

)
=

M

∑
i=1

(i − 1) Fj
+eirE(1x∆t(i−1)+t>K)

(14.7)=
(F+−1)

(
(F+)M(Me(M+1)r−F+(M−1)e(M+2)r)−F+e2r

)
(F+er−1)2

We can get the table of sensitivities for the "multiplier" of the payoff:

F=.6 0.7 0.8 0.9

r=0 1.5 2.32 3.72 5.47

0.1 2.57 4.8 10.07 19.59

0.2 4.93 12.05 34.55 86.53

0.3 11.09 38.15 147.57 445.59

Table 1 Multiplicative effect of skewness

9 The following sad anecdote illustrate the problem with banks. It was announces that "JPMorgan Joins
BofA With Perfect Trading Record in Quarter" ( Dawn Kopecki and Hugh Son - Bloomberg News, May
9, 2013). Yet banks while "steady earners" go through long profitable periods followed by blowups; they
end up losing back all cumulative profits in short episodes, just in 2008 they lost around 4.7 trillion U.S.
dollars before government bailouts. The same took place in 1982-1983 and in the Savings and Loans
crisis of 1991, see [109]).
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Explaining why Skewed Distributions Conceal the Mean Note that skewed dis-
tributions conceal their mean quite well, with P(X < E(x)) < 1

2 in the presence of
negative skewness. And such effect increases with fat-tailedness. Consider a neg-
atively skewed power law distribution, say the mirror image of a standard Pareto
distribution, with maximum value xmin, and domain (−∞, xmin], with exceedance
probability P(X > x) = − x−αxα

min, and mean − αxmin
α−1 , with α > 1, have a propor-

tion of 1− α−1
α of its realizations rosier than the true mean. Note that fat-tailedness

increases at lower values of α. The popular "eighty-twenty", with tail exponent
α = 1.15, has > 90 percent of observations above the true mean10 –if anything, it
should be called a "payoff" not a distribution. Likewise, to consider a thinner tailed
skewed distribution, for a Lognormal distribution with support (−∞, 0), with mean

m = −eµ+ σ2
2 , the probability of exceeding the mean is P(X > m = 1

2 erfc
(
− σ

2
√

2

)
,

which for σ = 1 is at 69%, and for σ = 2 is at 84%.

Forecasters We can see how forecasters who do not have skin in the game have
the incentive of betting on the low-impact high probability event, and ignoring
the lower probability ones, even if these are high impact. There is a confusion
between “digital payoffs”

∫
f j(x) dx and full distribution, called “vanilla payoffs”,∫

x f j(x) dx, see Taleb and Tetlock (2013)11.

Opacity and Risk Hiding: NonMathematical Summary We will next proceed
to summarize the mathematical argument in verbal form.

A) If an agent has the upside of the payoff of the random variable, with no
downside [OR A DISPROPORTIONATE SHARE OF UPSIDE WITH RESPECT
TO THE DOWNSIDE], and is judged solely on the basis of past performance,
then the incentive is to hide risks in the left tail using a negatively skewed
(or more generally, asymmetric) distribution for the performance. This can
be generalized to any payoff for which one does not bear the full risks and
negative consequences of oneâĂŹs actions.

B) Further, even if it is not intentional, i.e., the agent does not aim at prob-
abilistic rent at the expense of the principal (at variance with the way agents
are treated in the economics literature); by a survival argument, those agents
without skin in the game who tend to engage in strategies that hide risk in the
tail tend to fare better and longer and populate the agent population. So the
argument is not one of incentive driving the agents, but one of survival.

We can sketch a demonstration of these statements with the following rea-
soning. Assume that an agent has a payoff as a proportional cut of his perfor-
mance or the benefits to the principal, and can get a percentage at year end, his

10 This discussion of a warped probabilistic incentive corresponds to what John Kay has called the "Taleb
distribution", John Kay "A strategy for hedge funds and dangerous drivers", Financial Times, 16 January
2003.

11 Money managers do not have enough skin in the game unless they are so heavily invested in their
funds that they can end up in a net negative form the event. The problem is that they are judged on
frequency, not payoff, and tend to cluster together in packs to mitigate losses by making them look like
"industry event". Many fund managers beat the odds by selling tails, say covered writes, by which one
can increase the probability of gains but possibly lower the expectation. They also have the optionality
of multi-time series; they can manage to hide losing funds in the event of failure. Many fund companies
bury hundreds of losing funds away, in the "cemetery of history" (Taleb, 2007) .
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14.1 payoff skewness and lack of skin-in-the-game

compensation being tied to the visible income. The timing of the compensa-
tion is periodic, with no total claw back (subsequent obligation to completely
return past compensation). The expected value to the agent is that of a stream,
a sum of payoffs over time, extending indefinitely (or bounded by the life of
the agent). Assume that a loss will reduce his future risk-taking, or even termi-
nate it, in terms of shrinking of such contracts, owing to change in reputation.
A loss would hurt the track record, revealing it so to speak, making such a
stream of payoffs stop. In addition, the payoff of the agent is compounded
over time as the contracts get larger in response to the track record.

Critically, the principal does not observe statistical properties, only realiza-
tions of the random variable. However the agent has an edge over the principal,
namely that he can select negatively skewed payoffs. All he needs to do is to
figure out the shape of the probability distribution, not its expected returns,
nothing else. More technically, the expectation for the agent does not depend
on the size of the loss: a small loss or a large loss are the same to him. So the
agent can benefit by minimizing the probability of the loss, not the expectation.
Minimizing one not the other results in the most possibly negatively skewed
distribution.

This result can be extended to include any situation in which the compen-
sation or reward (in any form) to the agent depends on the probability, rather
than the true expectation.

In an evolutionary setting, downside harm via skin-in-the-game would cre-
ate an absorbing state, with the system failing to be ergodic, hence would clean
up this class of risk takers.
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Part III

( A N T I ) F R A G I L I T Y A N D N O N L I N E A R R E S P O N S E S TO
R A N D O M VA R I A B L E S





15 E X P O S U R E S A S T R A N S F O R M E D
R A N D O M VA R I A B L E S

Chapter Summary 15: Deeper into the conflation between a random variable
and exposure to it.

15.1 the conflation problem redux: exposures to
x confused with knowledge about x

A convex and linear function of a variable x. Confusing f(x) (on the vertical) and
x (the horizontal) is more and more significant when f(x) is nonlinear. The more
convex f(x), the more the statistical and other properties of f(x) will be divorced
from those of x. For instance, the mean of f(x) will be different from f(Mean of x),
by Jensen’s ineqality. But beyond Jensen’s inequality, the difference in risks between
the two will be more and more considerable. When it comes to probability, the more
nonlinear f, the less the probabilities of x matter compared to the nonlinearity of f.
Moral of the story: focus on f, which we can alter, rather than the measurement of
the elusive properties of x.

There are infinite numbers of functions F depending on a unique variable x.
All utilities need to be embedded in F.

15.1.1 Limitations of knowledge

. What is crucial, our limitations of knowledge apply to x not necessarily to f(x).
We have no control over x, some control over F(x). In some cases a very, very large
control over f(x).

This seems naive, but people do, as something is lost in the translation.

Probability Distribution of x Probability Distribution of fHxL

Figure 15.1: The Conflation
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exposures as transformed random variables

The danger with the treatment of the Black Swan problem is as follows: people
focus on x (“predicting x”). My point is that, although we do not understand
x, we can deal with it by working on F which we can understand, while others
work on predicting x which we can’t because small probabilities are incomputable,
particularly in “fat tailed” domains. f(x) is how the end result affects you.

The probability distribution of f(x) is markedly different from that of x, particu-
larly when f(x) is nonlinear. We need a nonlinear transformation of the distribution
of x to get f(x). We had to wait until 1964 to get a paper on “convex transformations
of random variables”, Van Zwet (1964)[120].

15.1.2 Bad news

F is almost always nonlinear, often “S curved”, that is convex-concave (for an in-
creasing function).

15.1.3 The central point about what to understand

When f (x) is convex, say as in trial and error, or with an option, we do not need to
understand x as much as our exposure to H. Simply the statistical properties of x
are swamped by those of H. That’s the point of antifragility in which exposure is
more important than the naive notion of “knowledge”, that is, understanding x.

15.1.4 Fragility and Antifragility

When f(x) is concave (fragile), errors about x can translate into extreme negative
values for F. When f(x) is convex, one is immune from negative variations.

The more nonlinear F the less the probabilities of x matter in the probability
distribution of the final package F.

Most people confuse the probabilites of x with those of F. I am serious: the entire
literature reposes largely on this mistake.

So, for now ignore discussions of x that do not have F. And, for Baal’s sake,
focus on F, not x.

15.2 transformations of probability distributions
Say x follows a distribution p(x) and z = f (x) follows a distribution g(z). Assume
g(z) continuous, increasing, and differentiable for now.

The density p at point r is defined by use of the integral

D(r) ≡
∫ r

−∞
p(x)dx

hence ∫ r

−∞
p(x) dx =

∫ f (r)

−∞
g(z) dz

In differential form
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15.2 transformations of probability distributions

g(z)dz = p(x)dx

[ASSUMING f is Borel measurable, i.e. has an inverse that is a Borel Set...]

since x = f (−1)(z), one obtains

g(z)dz = p
(

f (−1)(z)
)

d f (−1)(z)

Now, the derivative of an inverse function

f (−1)(z) =
1

f ′ ( f−1(z))
,

which provides the useful transformation heuristic:

g(z) =
p
(

f (−1)(z)
)

f ′(u)|u =
(

f (−1)(z)
) (15.1)

In the event that g(z) is monotonic decreasing, then

g(z) =
p
(

f (−1)(z)
)

| f ′(u)|u =
(

f (−1)(z)
)∣∣

Where f is convex (and continuous), 1
2 ( f (x − ∆x) + f (∆x + x)) ≥ f (x), concave if

1
2 ( f (x − ∆x) + f (∆x + x)) ≤ f (x). Let us simplify with sole condition, assuming f(.)

twice differentiable, ∂2 f
∂x2 ≥ 0 for all values of x in the convex case and <0 in the

concave one. [WILL DISCUSS OTHER CASES WHERE WE NEED TO SPLIT THE
R.V. IN TWO DOMAINS BECAUSE INVERSE NOT UNIQUE]

Some Examples.

Squaring x: p(x) is a Gaussian(with mean 0, standard deviation 1) , f(x)= x2

g(x) =
e−

x
2

2
√

2π
√

x
, x > 0

which corresponds to the Chi-square distribution with 1 degrees of freedom.

Exponentiating x :p(x) is a Gaussian(with mean µ, standard deviation σ)

g(x) =
e−

(log(x)−µ)2

2σ2

√
2πσx

which is the lognormal distribution.
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exposures as transformed random variables
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Figure 15.2: Simulation, first. The
distribution of the utility of changes
of wealth, when the changes in
wealth follow a power law with tail
exponent =2 (5 million Monte Carlo
simulations).

15.3 application 1: happiness ( f (x )) is different
from wealth (x )

There is a conflation of fat-tailedness of Wealth and Utility: Happiness ( f (x))does
not have the same statistical properties as wealth (x)

Case 1: The Kahneman Tversky Prospect theory, which is convex-concave

v(x) =


xa x ≥ 0

−λ (−xa) x < 0

with a and λ calibrated a = 0.88 and λ = 2.25

For x (the changes in wealth) following a T distribution with tail exponent α,

f (x) =

(
α

α+x2

) α+1
2

√
αB
(

α
2 , 1

2

)
Where B is the Euler Beta function, B(a, b) = Γ(a)Γ(b)/Γ(a + b) =

∫ 1
0 ta−1(1 −

t)b−1dt; we get (skipping the details of z= v(u) and f(u) du = z(x) dx), the distribu-
tion z(x) of the utility of happiness v(x)

z(x|α, a, λ) =



x
1−a

a
(

α

α+x2/a

) α+1
2

a
√

αB( α
2 , 1

2 )
x ≥ 0

(− x
λ )

1−a
a

 α

α+(− x
λ )

2/a

 α+1
2

aλ
√

αB( α
2 , 1

2 )
x < 0

Fragility: as defined in the Taleb-Douady (2012) sense, on which later, i.e. tail
sensitivity below K, v(x) is less “fragile” than x.

v(x) has thinner tails than x⇔ more robust.
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15.3 application 1: happiness ( f (x )) is different from wealth (x )

Distribution of V(x)

Distribution of x
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Figure 15.3: The same result derived
analytically, after the Monte Carlo
runs.

Tail of x

Tail of v(x)
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Figure 15.4: Left tail and fragility

ASYMPTOTIC TAIL More technically the asymptotic tail for V(x) becomes α
a (i.e,

for x and -x large, the exceedance probability for V, P>x ∼ K x−
α
a , with K a constant,

or

z(x) ∼ Kx−
α
a−1

We can see that V(x) can easily have finite variance when x has an infinite one.
The dampening of the tail has an increasingly consequential effect for lower values
of α.

Case 2: Compare to the Monotone concave of Classical Utility

Unlike the convex-concave shape in Kahneman Tversky, classical utility is mono-
tone concave. This leads to plenty of absurdities, but the worst is the effect on the
distribution of utility.

Granted one (K-T) deals with changes in wealth, the second is a function of
wealth.

The Kahneman-Tversky Prospect function is part of the class of the general-
ized "S curves", bounded on the left or the right, or with waning derivatives
that effectively gives the same result of boundedness (or more exactly, soft-
boundedness). Utility theory is unbounded on the left, with preserving deriva-
tives.
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exposures as transformed random variables
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Figure 15.5: Plot of 1− e−ax, illustra-
tive of standard utility theory.

Researchers tend to consider that K-T is "empirical" while general utility
is "normative". This distinction is absurd: K-T corresponds to normal left-
boundedness, as with all dose-responses present in nature. For an organism,
death is the bounded worst outcome. You cannot keep having detriment unless
you have infinite resources or capabilities.

The next section illustrates the more general statement that anything with
concave-left exposure has a mean that degrades enormously under increases
in uncertainty. Utility theory, under transformation, gives absurd results math-
ematically.

Take the standard concave utility function g(x)= 1- e−ax . With a=1

The distribution of v(x) will be

v(x) = − e−
(µ+log(1−x))2

2σ2

√
2πσ(x− 1)

Which can be tolerated owing to the rapid drop in probabilities in the Gaussian
tail. But with a fatter tailed distribution, such as the standard powerlaw (a Student
T Distribution) (Gabaix, 2008,[47]), where α is the tail exponent,

v(x) =

x

(
α

(log(1−x)−1)2

a2 +α

) α+1
2

√
α(a− ax)B

(
α
2 , 1

2

)
With such a distribution of utility it would be absurd to do anything.

15.4 the effect of convexity on the distribution
of f(x)

Note the following property.
Distributions that are skewed have their mean dependent on the variance (when

it exists), or on the scale. In other words, more uncertainty raises the expectation.
Demonstration 1:TK
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15.5 estimation methods when the payoff is convex
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Figure 15.6: Distribution of utility of
wealth under probabilistic transfor-
mation

Outcome

Probability

Low Uncertainty

High Uncertainty

Example: the Lognormal Distribution has a term σ2

2 in its mean, linear to
variance.

Example: the Exponential Distribution 1− e−xλ x ≥ 0 has the mean a
concave function of the variance, that is, 1

λ , the square root of its variance.

Example: the Pareto Distribution Lαx−1−αα x ≥ L , α >2 has the mean
√

α− 2
√

α × Standard Deviation,
√

α
α−2 L

α−1

15.5 estimation methods when the payoff is con-
vex

A simple way to see the point that convex payoffs have larger estimation errors: the
Ilmanen study assumes that one can derive strong conclusions from a single histor-
ical path not taking into account sensitivity to counterfactuals and completeness of
sampling. It assumes that what one sees from a time series is the entire story. 1

1 The same flaw, namely missing convexity, is present in Bodarenko ??.
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exposures as transformed random variables

Where data tend to be missing

Outcomes

Probability

Figure 1: The Small Sample Effect and Naive Empiricism: When one looks at
historical returns that are skewed to the left, most missing observations are in the
left tails, causing an overestimation of the mean. The more skewed the payoff, and
the thicker the left tail, the worst the gap between observed and true mean.

Now of concern for us is assessing the stub, or tail bias, that is, the difference
between M and M*, or the potential contribution of tail events not seen in the win-
dow used for the analysis. When the payoff in the tails is powerful from convex
responses, the stub becomes extremely large. So the rest of this note will go be-
yond the Ilmanen (2012) to explain the convexities of the payoffs in the tails and
generalize to classical mistakes of testing strategies with explosive tail exposures
on a finite simple historical sample. It will be based on the idea of metaprobabil-
ity (or metamodel): by looking at effects of errors in models and representations.
All one needs is an argument for a very small probability of a large payoff in the
tail (devastating for the option seller) to reverse long shot arguments and make it
uneconomic to sell a tail option. All it takes is a small model error to reverse the
argument.

The Nonlineatities of Option Packages There is a compounding effect of rarety of
tail events and highly convex payoff when they happen, a convexity that is generally
missed in the literature. To illustrate the point, we construct a “return on theta” (or
return on time-decay) metric for a delta-neutral package of an option, seen at t0 o
given a deviation of magnitude NσK.

(15.2)
Π(N, K) ≡ 1

θS0 ,t0 , δ

(
O(S0eNσK

√
δ, K, T − t0, σK)

−O (S0, K, T − t0 − δ, σK)− ∆S0 ,t0 (1− S0) eNσK
√

δ

)
,

where 0 (S0, K, T − t0 − δ, σK)is the European option price valued at time t0 off an
initial asset value S0 , with a strike price K, a final expiration at time T, and priced
using an “implied” standard deviation σK. The payoff of Π is the same whether
O is a put or a call, owing to the delta-neutrality by hegding using a hedge ratio
∆S0 ,t0 (thanks to put-call parity, ∆S0 ,t0 is negative if O is a call and positive otherwise).
θS0 ,t0 is the discrete change in value of the option over a time increment δ (changes
of value for an option in the absence of changes in any other variable). With the
increment δ = 1/252, this would be a single business day. We assumed interest
rate are 0, with no loss of generality (it would be equivalent of expressing the
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15.5 estimation methods when the payoff is convex

problem under a risk-neutral measure). What 15.2 did is re-express the Fokker-
Plank-Kolmogorov differential equation (Black Scholes), in discrete terms, away
from the limit of δ →0. In the standard Black-Scholes World, the expectation of
Π(N,K) should be zero, as N follows a Gaussian distribution with mean σ2. But we
are not about the Black Scholes world and we need to examine payoffs to potential
distributions. The use of σKneutralizes the effect of “expensive” for the option as
we will be using a multiple of σK as N standard deviations; if the option is priced
at 15.87% volatility, then one standard deviation would correspond to a move of
about 1%, e

15.5.1 Convexity and Explosive Payoffs

Of concern to us is the explosive nonlinearity in the tails. Let us examine the payoff
of Π across many values of K = S0eΛσK

√
δ, in other words how many “sigmas”

away from the money the strike is positioned. A package about 20 σ out of the
money , that is, Λ=20, the crash of 1987 would have returned 229,000 days of decay,
compensating for > 900 years of wasting premium waiting for the result. An
equivalent reasoning could be made for subprime loans. From this we can assert
that we need a minimum of 900 years of data to start pronouncing these options 20

standard deviations out-of-the money “expensive”, in order to match the frequency
that would deliver a payoff, and, more than 2000 years of data to make conservative
claims. Clearly as we can see with Λ=0, the payoff is so linear that there is no hidden
tail effect.

L = 20

L = 10

L = 0 N

PHNL

5 10 15 20

2000

4000

6000

8000

Figure 2: Returns for package Π(N,K= S0Exp[Λ σK] ) at values of Λ= 0,10,20

and N, the conditional “sigma” deviations.
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exposures as transformed random variables
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Figure 15.7: In probability space.
Histogram of the distribution of
the returns Λ=10 using powerlaw
returns for underlying distribution
with α tail exponent =3.

Figure 3: The extreme convexity of an extremely out of the money option, with
Λ=20

Visibly the convexity is compounded by the fat-tailedness of the process: intu-
itively a convex transformation of a fat-tailed process, say a powerlaw, produces a
powerlaw of considerably fatter tails. The Variance swap for instance results in 1

2 the
tail exponent of the distribution of the underlying security, so it would have infi-
nite variance with tail 3

2 off the “cubic” exonent discussed in the literature (Gabaix
et al,2003; Stanley et al, 2000) -and some out-of-the money options are more convex
than variance swaps, producing tail equivalent of up to 1

5 over a broad range of
fluctuations.

For specific options there may not be an exact convex transformation. But we can
get a Monte Carlo simulation illustrating the shape of the distribution and visually
showing how skewed it is.

2

Fragility Heuristic and Nonlinear Exposure to Implied Volatility Most of the
losses from option portfolios tend to take place from the explosion of implied
volatility, therefore acting as if the market had already experienced a tail event
(say in 2008). The same result as Figure 3 can be seen for changes in implied
volatility: an explosion of volatility by 5 × results in a 10 σ option gaining 270 ×
(the VIx went up > 10 × during 2008). (In a well publicized debacle, the speculator
Niederhoffer went bust because of explosive changes in implied volatility in his
option portfolio, not from market movement; further, the options that bankrupted
his fund ended up expiring worthless weeks later).

The Taleb and Douady (2012)[105] , Taleb Canetti et al (2012)[100] fragility heuris-
tic identifies convexity to significant parameters as a metric to assess fragility to
model error or representation: by theorem, model error maps directly to nonlinear-
ity of parameters. The heuristic corresponds to the perturbation of a parameter, say
the scale of a probability distribution and looks at the effect of the expected shortfall;
the same theorem asserts that the asymmetry between gain and losses (convexity)
maps directly to the exposure to model error and to fragility. The exercise allows
us to re-express the idea of convexity of payoff by ranking effects.

2 This convexity effect can be mitigated by some dynamic hedges, assuming no gaps but, because of “local
time” for stochastic processes; in fact, some smaller deviations can carry the cost of larger ones: for a
move of -10 sigmas followed by an upmove of 5 sigmas revision can end up costing a lot more than a
mere -5 sigmas.Tail events can come from a volatile sample path snapping back and forth.
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15.5 estimation methods when the payoff is convex

Table 23: The Table presents differents results (in terms of multiples of option premia over
intrinsic value) by multiplying implied volatility by 2, 3,4. An option 5 conditional standard
deviations out of the money gains 16 times its value when implied volatility is multiplied by
4. Further out of the money options gain exponentially. Note the linearity of at-the-money
options

×2 ×3 ×4
ATM 2 3 4

Λ = 5 5 10 16

Λ = 10 27 79 143

Λ = 20 7686 72741 208429

15.5.2 Conclusion: The Asymmetry in Decision Making

To assert overpricing (or refute underpricing) of tail events expressed by convex
instruments requires an extraordinary amount of “evidence”, a much longer time
series about the process and strong assumptions about temporal homogeneity.

Out of the money options are so convex to events that a single crash (say every 50,
100, 200, even 900 years) could be sufficient to justify skepticism about selling some
of them (or avoiding to sell them) –those whose convexity matches the frequency of
the rare event. The further out in the tails, the less claims one can make about their
"value", state of being "expensive", etc. One can make claims on bounded variables
or payoffs, perhaps, not for the tails.
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16 A N U N C E R TA I N T Y A P P R OA C H
TO F R A G I L I T Y

Chapter Summary 16: We provide a mathematical approach to fragility as nega-
tive sensitivity to a semi-measure of dispersion and volatility (a variant of neg-
ative or positive "vega") and examine the link to nonlinear effects. We link to
the litterature on model "robustness" and show how we add nonlinearity to the
conventional approaches.

16.1 a review of the general notion of "robust-
ness"

This section is incomplete; it will present a general review the literature and the
variety of definitions of "robustness" in:

• Loss (risk) functions in statistical fitting

• Loss (risk) functions in risk and insurance

• Decision theory (minimax, etc.)

• Statistical robustness -

• Control theory-

– Stochastic control

• Dynamical systems-

• Economic modelling (see Hansen and Sargent) -

We explain why what we do is add a nonlinear dimension to the loss models
and solve some of the issues with loss models since our funtion (nonlinearity of
exposure) solves the problem of mini-max with unbounded losses, and how our
payoff function ("exposure") maps to the loss function.

16.2 introduction
In short, fragility as we define it is related to how a system suffers from the variabil-
ity of its environment beyond a certain preset threshold (when threshold is K, it is
called K-fragility), while antifragility refers to when it benefits from this variability
—in a similar way to “vega” of an option or a nonlinear payoff, that is, its sensitivity
to volatility or some similar measure of scale of a distribution.
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an uncertainty approach to fragility

Breaking Point

Dose

Response
Payoff of the Coffee Cup

Broken Glass

Higher dispersion of 

stressor increases probab.

of breaking.

Deterministic and

invariant

stressor

Stochastic

Stressor

Dose

Response

Figure 16.1: Illustrates why the coffee cup is fragile because it doesn’t like variability. Imag-
ine a stressor of intensity k. A deterministic stressor at k will always be more favorable than
a stochastic stressor with average k̄. The cup breaks at k + δ, even if there are compensating
effects at k− δ that lower the average. The more dispersion around k̄, given the same aver-
age, the higher the probability of breakage. This illustrates the dependence of fragility on
dispersion ("vega") and the theorems showing how fragility lies in the second order effect.
[INCLUDE STOCHASTIC RESONANCE AS AN OPPOSITE EFFECT]

We are not saying that are no other definitions and representations of fragility (al-
though we could not find any that clashes with, or does not fit within our variability
approach). Our point is that such a definition allows us to perform analyses based
on nonlinearity. Our method is, in a way, inverse "real option" theory ([117],[1]),
by with studies of contingent claims are generalized to all decision-making under
uncertainty that entail asymmetry of payoff.

Simply, a coffee cup on a table suffers more from large deviations than from the
cumulative effect of some shocks—conditional on being unbroken, it has to suffer
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16.2 introduction
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Figure 16.2: A definition of fragility as left tail-vega sensitivity; the figure shows the effect
of the perturbation of the lower semi-deviation s− on the tail integral ξ of (x – Ω) below K,
Ω being a centering constant. Our detection of fragility does not require the specification of
f the probability distribution.

more from “tail” events than regular ones around the center of the distribution, the
“at the money” category. This is the case of elements of nature that have survived:
conditional on being in existence, then the class of events around the mean should
matter considerably less than tail events, particularly when the probabilities de-
cline faster than the inverse of the harm, which is the case of all used monomodal
probability distributions. Further, what has exposure to tail events suffers from
uncertainty; typically, when systems – a building, a bridge, a nuclear plant, an air-
plane, or a bank balance sheet– are made robust to a certain level of variability and
stress but may fail or collapse if this level is exceeded, then they are particularly
fragile to uncertainty about the distribution of the stressor, hence to model error,
as this uncertainty increases the probability of dipping below the robustness level,
bringing a higher probability of collapse. In the opposite case, the natural selection
of an evolutionary process is particularly antifragile, indeed, a more volatile envi-
ronment increases the survival rate of robust species and eliminates those whose
superiority over other species is highly dependent on environmental parameters.

Figure 16.2 show the “tail vega” sensitivity of an object calculated discretely at
two different lower absolute mean deviations. We use for the purpose of fragility
and antifragility, in place of measures in L2 such as standard deviations, which
restrict the choice of probability distributions, the broader measure of absolute de-
viation, cut into two parts: lower and upper semi-deviation above the distribution
center Ω.

This article aims at providing a proper mathematical definition of fragility, ro-
bustness, and antifragility and examining how these apply to different cases where
this notion is applicable. 1

1 Hansen and Sargent, in [54]:"A long tradition dating back to Friedman (...) advocates framing macroe-
conomic policy rules and interpreting econometric findings in light of doubts about model specification,
though how th0se doubts have been formalized in practice has varied". In fact what we are adding to
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an uncertainty approach to fragility

16.2.1 Intrinsic and Inherited Fragility:

Our definition of fragility is two-fold. First, of concern is the intrinsic fragility,
the shape of the probability distribution of a variable and its sensitivity to s-, a
parameter controlling the left side of its own distribution. But we do not often
directly observe the statistical distribution of objects, and, if we did, it would be
difficult to measure their tail-vega sensitivity. Nor do we need to specify such
distribution: we can gauge the response of a given object to the volatility of an
external stressor that affects it. For instance, an option is usually analyzed with
respect to the scale of the distribution of the “underlying” security, not its own; the
fragility of a coffee cup is determined as a response to a given source of randomness
or stress; that of a house with respect of, among other sources, the distribution
of earthquakes. This fragility coming from the effect of the underlying is called
inherited fragility. The transfer function, which we present next, allows us to assess
the effect, increase or decrease in fragility, coming from changes in the underlying
source of stress.

Transfer Function: A nonlinear exposure to a certain source of randomness maps
into tail-vega sensitivity (hence fragility). We prove that

Inherited Fragility⇔ Concavity in exposure on the left side of the distribution
and build H, a transfer function giving an exact mapping of tail vega sensitivity

to the second derivative of a function. The transfer function will allow us to probe
parts of the distribution and generate a fragility-detection heuristic covering both
physical fragility and model error.

16.2.2 Fragility As Separate Risk From Psychological Preferences

16.2.3 Avoidance of the Psychological

We start from the definition of fragility as tail vega sensitivity, and end up with
nonlinearity as a necessary attribute of the source of such fragility in the inherited
case —a cause of the disease rather than the disease itself. However, there is a long
literature by economists and decision scientists embedding risk into psychological
preferences —historically, risk has been described as derived from risk aversion as a
result of the structure of choices under uncertainty with a concavity of the muddled
concept of “utility” of payoff, see Pratt (1964)[90], Arrow (1965) [2], Rothchild and
Stiglitz(1970,1971) [96],[97]. But this “utility” business never led anywhere except
the circularity, expressed by Machina and Rothschild (1987,2008)[73],[74], “risk is
what risk-averters hate.” Indeed limiting risk to aversion to concavity of choices is a
quite unhappy result —the utility curve cannot be possibly monotone concave, but
rather, like everything in nature necessarily bounded on both sides, the left and the
right, convex-concave and, as Kahneman and Tversky (1979)[62] have debunked,
both path dependent and mixed in its nonlinearity. (See Van Zwet 1964 for the
properties of mixed convexities [120].)

the story as far as economics here is local and global convexity of the variation and the asymmetry in
one side or the other.
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16.2.4 Beyond Jensen’s Inequality

The economics and decision-theory literature reposes on the effect of Jensen’s in-
equality, an analysis which requires monotone convex or concave transformations
[? ]—in fact limited to the expectation operator. The world is unfortunately more
complicated in its nonlinearities. Thanks to the transfer function, which focuses on
the tails, we can accommodate situations where the source is not merely convex, but
convex-concave and any other form of mixed nonlinearities common in exposures,
which includes nonlinear dose-response in biology. For instance, the application of
the transfer function to the Kahneman-Tversky value function, convex in the neg-
ative domain and concave in the positive one, shows that its decreases fragility in
the left tail (hence more robustness) and reduces the effect of the right tail as well
(also more robustness), which allows to assert that we are psychologically “more
robust” to changes in wealth than implied from the distribution of such wealth,
which happens to be extremely fat-tailed.

Accordingly, our approach relies on nonlinearity of exposure as detection of the
vega-sensitivity, not as a definition of fragility. And nonlinearity in a source of stress
is necessarily associated with fragility. Clearly, a coffee cup, a house or a bridge
don’t have psychological preferences, subjective utility, etc. Yet they are concave in
their reaction to harm: simply, taking z as a stress level and Π(z) the harm function,
it suffices to see that, with n > 1,

Π(nz) < n Π(z) for all 0 < n z < Z∗

where Z∗ is the level (not necessarily specified) at which the item is broken. Such
inequality leads to Π(z) having a negative second derivative at the initial value z.

So if a coffee cup is less harmed by n times a stressor of intensity Z than once a
stressor of nZ, then harm (as a negative function) needs to be concave to stressors
up to the point of breaking; such stricture is imposed by the structure of survival
probabilities and the distribution of harmful events, and has nothing to do with
subjective utility or some other figments. Just as with a large stone hurting more
than the equivalent weight in pebbles, if, for a human, jumping one millimeter
caused an exact linear fraction of the damage of, say, jumping to the ground from
thirty feet, then the person would be already dead from cumulative harm. Actu-
ally a simple computation shows that he would have expired within hours from
touching objects or pacing in his living room, given the multitude of such stres-
sors and their total effect. The fragility that comes from linearity is immediately
visible, so we rule it out because the object would be already broken and the per-
son already dead. The relative frequency of ordinary events compared to extreme
events is the determinant. In the financial markets, there are at least ten thousand
times more events of 0.1% deviations than events of 10%. There are close to 8,000

micro-earthquakes daily on planet earth, that is, those below 2 on the Richter scale
—about 3 million a year. These are totally harmless, and, with 3 million per year,
you would need them to be so. But shocks of intensity 6 and higher on the scale
make the newspapers. Accordingly, we are necessarily immune to the cumulative
effect of small deviations, or shocks of very small magnitude, which implies that
these affect us disproportionally less (that is, nonlinearly less) than larger ones.

Model error is not necessarily mean preserving. s-, the lower absolute semi-
deviation does not just express changes in overall dispersion in the distribution,
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an uncertainty approach to fragility

such as for instance the “scaling” case, but also changes in the mean, i.e. when
the upper semi-deviation from Ω to infinity is invariant, or even decline in a com-
pensatory manner to make the overall mean absolute deviation unchanged. This
would be the case when we shift the distribution instead of rescaling it. Thus the
same vega-sensitivity can also express sensitivity to a stressor (dose increase) in
medicine or other fields in its effect on either tail. Thus s−(l) will allow us to
express the negative sensitivity to the “disorder cluster” (see Antifragile): i) uncer-
tainty, ii) variability, iii) imperfect, incomplete knowledge, iv) chance, v) chaos, vi)
volatility, vii) disorder, viii) entropy, ix) time, x) the unknown, xi) randomness, xii)
turmoil, xiii) stressor, xiv) error, xv) dispersion of outcomes.

Detection Heuristic Finally, thanks to the transfer function, this paper proposes a
risk heuristic that "works " in detecting fragility even if we use the wrong model/pricing
method/probability distribution. The main idea is that a wrong ruler will not mea-
sure the height of a child; but it can certainly tell us if he is growing. Since risks in
the tails map to nonlinearities (concavity of exposure), second order effects reveal
fragility, particularly in the tails where they map to large tail exposures, as revealed
through perturbation analysis. More generally every nonlinear function will pro-
duce some kind of positive or negative exposures to volatility for some parts of the
distribution.

Figure 16.3: Disproportionate effect of tail events on nonlinear exposures, illustrating the
necessary character of the nonlinearity of the harm function and showing how we can ex-
trapolate outside the model to probe unseen fragility.

Fragility and Model Error

As we saw this definition of fragility extends to model error, as some models pro-
duce negative sensitivity to uncertainty, in addition to effects and biases under vari-
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ability. So, beyond physical fragility, the same approach measures model fragility,
based on the difference between a point estimate and stochastic value (i.e., full distri-
bution). Increasing the variability (say, variance) of the estimated value (but not the
mean), may lead to one-sided effect on the model —just as an increase of volatility
causes porcelain cups to break. Hence sensitivity to the volatility of such value,
the “vega” of the model with respect to such value is no different from the vega of
other payoffs. For instance, the misuse of thin-tailed distributions (say Gaussian)
appears immediately through perturbation of the standard deviation, no longer
used as point estimate, but as a distribution with its own variance. For instance,
it can be shown how fat-tailed (e.g. power-law tailed) probability distributions can
be expressed by simple nested perturbation and mixing of Gaussian ones. Such a
representation pinpoints the fragility of a wrong probability model and its conse-
quences in terms of underestimation of risks, stress tests and similar matters.

Antifragility

It is not quite the mirror image of fragility, as it implies positive vega above some
threshold in the positive tail of the distribution and absence of fragility in the left
tail, which leads to a distribution that is skewed right. Table 24 introduces the
Exhaustive Taxonomy of all Possible Payoffs y = f (x)

Table 24: Payoffs and Mixed Nonlinearities

Condition Left Tail
(Loss Do-
main)

Right Tail
(Gain Do-
main)

Nonlinear
Payoff Func-
tion y = f (x)
"derivative"
where x is
a random
variable

Derivatives
Equivalent

Effect of
fatailed-
ness of f (x)
compared
to primitive
x.

Fragile
(type 1)

Fat (reg-
ular or
absorbing
barrier)

Fat Mixed con-
cave left,
convex right
(fence)

Long up-
vega, short
down-vega

More
fragility
if absorb-
ing barrier,
neutral
otherwise

Fragile
(type 2)

Thin Thin concave Short vega More
fragility

Robust Thin Thin Mixed convex
left, concave
right (digital,
sigmoid)

Short up -
vega, long
down - vega

No effect

Antifragile Thin Fat
(thicker
than left)

Convex Long vega More an-
tifragility

The central Table, Table 1 introduces the exhaustive map of possible outcomes,
with 4 mutually exclusive categories of payoffs. Our steps in the rest of the paper
are as follows: a. We provide a mathematical definition of fragility, robustness
and antifragility. b. We present the problem of measuring tail risks and show
the presence of severe biases attending the estimation of small probability and its

281



an uncertainty approach to fragility

nonlinearity (convexity) to parametric (and other) perturbations. c. We express the
concept of model fragility in terms of left tail exposure, and show correspondence
to the concavity of the payoff from a random variable. d. Finally, we present our
simple heuristic to detect the possibility of both fragility and model error across a
broad range of probabilistic estimations.

Conceptually, fragility resides in the fact that a small – or at least reasonable
– uncertainty on the macro-parameter of a distribution may have dramatic conse-
quences on the result of a given stress test, or on some measure that depends on the
left tail of the distribution, such as an out-of-the-money option. This hypersensitiv-
ity of what we like to call an “out of the money put price” to the macro-parameter,
which is some measure of the volatility of the distribution of the underlying source
of randomness.

Formally, fragility is defined as the sensitivity of the left-tail shortfall (non-conditioned
by probability) below a certain threshold K to the overall left semi-deviation of the
distribution.

Examples

i- A porcelain coffee cup subjected to random daily stressors from use.

ii- Tail distribution in the function of the arrival time of an aircraft.

iii- Hidden risks of famine to a population subjected to monoculture —or, more
generally, fragilizing errors in the application of Ricardo’s comparative advan-
tage without taking into account second order effects.

iv- Hidden tail exposures to budget deficits’ nonlinearities to unemployment.

v- Hidden tail exposure from dependence on a source of energy, etc. (“squeez-
ability argument”).

It also shows why this is necessarily linked to accelerated response, how "size
matters". The derivations explain in addition:

• How spreading risks are dangerous compared to limited one we need to
weave into the derivations the notion of risk spreading as a non-concave re-
sponse to make links clearer.

• Why error is a problem in the presence of nonlinearity.

• Why polluting "a little" is qualitatively different from pollution "a lot".

• Eventually, why fat tails arise from accelerating response.
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17 T H E F R A G I L I T Y T H E O R E M S

Chapter Summary 17: Presents the fragility theorems and the transfer function
between nonlinear response and the benefits and harm from increased uncer-
tainty.

The following offers a formal definition of fragility as "vega", negative expected
response from uncertainty.

17.1 tail sensitivity to uncertainty

We construct a measure of "vega", that is, the sensitivity to uncertainty, in the left
tails of the distribution that depends on the variations of s the semi-deviation below
a certain level W, chosen in the L1 norm in order to ensure its existence under
"fat tailed" distributions with finite first semi-moment. In fact s would exist as a
measure even in the case of undefined moments to the right side of W.

Let X be a random variable, the distribution of which is one among a one-
parameter family of pdf, fλ, λ ∈ I ⊂ R. We consider a fixed reference value Ω
and, from this reference, the "raw" left-semi-absolute deviation:1

s−(λ) =
∫ Ω

−∞
(Ω− x) fλ(x)dx (17.1)

We assume that λ → s–(λ) is continuous, strictly increasing and spans the whole
range R+ = [0, +∞), so that we may use the left-semi-absolute deviation s– as a
parameter by considering the inverse function λ(s) : R+ → I, defined by s− (λ(s)) =
s for s ∈ R+.

This condition is for instance satisfied if, for any given x < Ω, the probability is
a continuous and increasing function of λ. Indeed, denoting

Fλ(x) = Pfλ
(X < x) =

∫ x

−∞
fλ(t) dt, (17.2)

an integration by parts yields:

s−(λ) =
∫ Ω

−∞
Fλ(x) dx

1 We use a measure related to the left-semi absolute deviation, or roughly the half the mean absolute
deviation (the part in the negative domain) because 1) distributions are not symmetric and might have
changes on the right of Ω that are not of interest to us, 2) standard deviation requires finite second
moment.
Further, we do not adjust s− by its probability –with no loss of generality. Simply, probability in the
negative domain is close to 1

2 and would not change significantly in response to changes in parameters.
Probabilities in the tails are nonlinear to changes, not those in the body of the distribution.
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This is the case when λ is a scaling parameter, i.e., X ∼ Ω + λ(X1 −Ω) indeed one
has in this case

Fλ(x) = F1

(
Ω +

x−Ω
λ

)
,

∂Fλ

∂λ
(x) =

Ω− x
λ2 fλ(x) and s−(λ) = λ s−(1).

It is also the case when λ is a shifting parameter, i.e. X ∼ X0 − λ , indeed, in this
case Fλ(x) = F0(x + λ) and ∂s−

∂λ (x) = Fλ(Ω).

For K < Ω and s ∈ R+, let:

ξ(K, s−) =
∫ K

−∞
(Ω− x) fλ(s−)(x)dx (17.3)

In particular, ξ(Ω, s–) = s–. We assume, in a first step, that the function ξ(K,s–) is
differentiable on (−∞, Ω] × R+. The K-left-tail-vega sensitivity of X at stress level
K < Ω and deviation level s− > 0 for the pdf fλ is:

V(X, fλ, K, s−) =
∂ξ

∂s−
(K, s−) = (∫ Ω

−∞
(Ω− x)

∂ fλ)
∂λ

dx
)(

ds−

dλ

)−1

(17.4)

As in the many practical instances where threshold effects are involved, it may
occur that ξ does not depend smoothly on s–. We therefore also define a finite
difference version of the vega-sensitivity as follows:

(17.5)
V(X, fλ, K, s−) =

1
2δs

(
ξ(K, s− + ∆s)− ξ(K, s− − ∆s)

)
=
∫ K

−∞
(Ω− x)

fλ(s− + ∆s)(x)− fλ(s− − ∆s)(x)
2 ∆ s

dx

Hence omitting the input ∆s implicitly assumes that ∆s→ 0.

Note that ξ(K, s−) = −E(X|X < K) P fλ
(X < K). It can be decomposed into two

parts:
ξ
(
K, s−(λ)

)
= (Ω− K)Fλ(K) + Pλ(K) (17.6)

Pλ(K) =
∫ K

−∞
(K− x) fλ(x) dx (17.7)

Where the first part (Ω− K)Fλ(K) is proportional to the probability of the variable
being below the stress level K and the second part Pλ(K) is the expectation of the
amount by which X is below K (counting 0 when it is not). Making a parallel with
financial options, while s–(λ) is a “put at-the-money”, ξ(K,s–) is the sum of a put
struck at K and a digital put also struck at K with amount Ω – K; it can equivalently
be seen as a put struck at Ω with a down-and-in European barrier at K.
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17.1 tail sensitivity to uncertainty

Figure 17.1: The different curves of Fλ(K) and Fλ′ (K) showing the difference in sensitivity to
changes at different levels of K.

Letting λ = λ(s–) and integrating by part yields

ξ
(
K, s−(λ)

)
= (Ω− K)Fλ(K) +

∫ K

−∞
Fλ(x)dx = ∫ Ω

−∞
FK

λ (x) dx (17.8)

Where FK
λ (x) = Fλ (min(x, K)) = min (Fλ(x), Fλ(K)), so that

V(X, fλ, K, s−) =
∂ξ

∂s
(K, s−)

=

∫ Ω
−∞

∂FK
λ

∂λ (x) dx∫ Ω
−∞

∂Fλ
∂λ (x) dx

(17.9)

For finite differences

V(X, fλ, K, s−, ∆s) =
1

2∆ s

∫ Ω

−∞
∆FK

λ,∆s(x)dx (17.10)

where λ+
s and λ−s are such that s(λ+

s− ) = s− + ∆s, s(λ−s− ) = s− − ∆s and ∆FK
λ,∆s(x) =

FK
λs+

(x)− FK
λs−

(x).
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17.1.1 Precise Expression of Fragility

In essence, fragility is the sensitivity of a given risk measure to an error in the esti-
mation of the (possibly one-sided) deviation parameter of a distribution, especially
due to the fact that the risk measure involves parts of the distribution – tails – that
are away from the portion used for estimation. The risk measure then assumes
certain extrapolation rules that have first order consequences. These consequences
are even more amplified when the risk measure applies to a variable that is de-
rived from that used for estimation, when the relation between the two variables is
strongly nonlinear, as is often the case.

Definition of Fragility: The Intrinsic Case The local fragility of a random variable Xλ

depending on parameter λ, at stress level K and semi-deviation level s–(λ) with pdf fλ is
its K-left-tailed semi-vega sensitivity V(X, fλ, K, s−).

The finite-difference fragility of Xλ at stress level K and semi-deviation level s−(λ)±∆s
with pdf fλ is its K-left-tailed finite-difference semi-vega sensitivity V(X, fλ, K, s−, ∆s).

In this definition, the fragility relies in the unsaid assumptions made when ex-
trapolating the distribution of Xλ from areas used to estimate the semi-absolute
deviation s–(λ), around Ω, to areas around K on which the risk measure ξ depends.

Definition of Fragility: The Inherited Case Next we consider the particular case
where a random variable Y = ϕ(X) depends on another source of risk X, itself
subject to a parameter λ. Let us keep the above notations for X, while we denote by
gλ the pdf of Y,ΩY = ϕ(Ω) and u−(λ) the left-semi-deviation of Y. Given a “strike”
level

L = ϕ(K), let us define, as in the case of X :

ζ
(

L, u−(λ)
)

=
∫ K

−∞
(ΩY − y)gλ(y) dy (17.11)

The inherited fragility of Y with respect to X at stress level L = ϕ(K) and left-semi-
deviation level s−(λ) of X is the partial derivative:

VX
(
Y, gλ, L, s−(λ)

)
=

∂ζ

∂s
(

L, u−(λ)
)

=(∫ K

−∞
(ΩY −Y)

∂gλ

∂λ
(y)dy

)(
ds−

dλ

)−1

(17.12)

Note that the stress level and the pdf are defined for the variable Y, but the
parameter which is used for differentiation is the left-semi-absolute deviation of X,
s–(λ). Indeed, in this process, one first measures the distribution of X and its left-
semi-absolute deviation, then the function ϕ is applied, using some mathematical
model of Y with respect to X and the risk measure ζ is estimated. If an error is
made when measuring s–(λ), its impact on the risk measure of Y is amplified by
the ratio given by the “inherited fragility”.

Once again, one may use finite differences and define the finite-difference inherited
fragility of Y with respect to X, by replacing, in the above equation, differentiation
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17.2 effect of nonlinearity on intrinsic fragility

by finite differences between values λ+ and λ–, where s–(λ+) = s– + ∆s and s–(λ–) =
s– – ∆s.

17.2 effect of nonlinearity on intrinsic fragility
Let us study the case of a random variable Y = ϕ(X); the pdf gλ of which also
depends on parameter λ, related to a variable X by the nonlinear function ϕ. We
are now interested in comparing their intrinsic fragilities. We shall say, for instance,
that Y is more fragilefragile at the stress level L and left-semi-deviation level u−(λ)
than the random variable X, at stress level K and left-semi-deviation level s−(λ) if
the L-left-tailed semi-vega sensitivity of Yλ is higher than the K-left-tailed semi-vega
sensitivity of Xλ:

V(Y, gλ, L, µ−) > V(X, fλ, K, s−) (17.13)

One may use finite differences to compare the fragility of two random variables:V(Y, gλ, L, ∆µ) >
V(X, fλ, K, ∆s). In this case, finite variations must be comparable in size, namely
∆u/u– = ∆s/s–.

Let us assume, to start, that ϕ is differentiable, strictly increasing and scaled so
that ΩY = ϕ(Ω) = Ω. We also assume that, for any given x < Ω, ∂Fλ

∂λ (x) > 0.
In this case, as observed above, λ → s–(λ) is also increasing.

Let us denote Gy(y) = Pgλ
(Y < y) . We have:

Gλ (φ(x)) = Pgλ
(Y < φ(y)) = P fλ

(X < x) = Fλ(x). (17.14)

Hence, if ζ(L, u–) denotes the equivalent of ξ(K), s− with variable (Y, gλ) instead
of (X, fλ), we have:

ζ
(

L, u−(λ)
)

=
∫ Ω

−∞
FK

λ (x)
dφ

dx
(x)dx (17.15)

Because ϕ is increasing and min(ϕ(x),ϕ(K)) = ϕ(min(x,K)). In particular

µ−(λ) = ζ
(
Ω, µ−(λ)

)
=
∫ Ω

−∞
FK

λ (x)
dφ

dx
(x) dx (17.16)

The L-left-tail-vega sensitivity of Y is therefore:

V
(
Y, gλ, L, u−(λ)

)
=

∫ Ω
−∞

∂FK
λ

∂λ (x) dφ
dx (x) dx∫ Ω

−∞
∂Fλ
∂λ (x) dφ

dx (x) dx
(17.17)

For finite variations:

V(Y, gλ, L, u−(λ), ∆u) =
1

2∆u

∫ Ω

−∞
∆FK

λ,∆u(x)
dφ

dx
(x)dx (17.18)

Where λ+
u− and λ−u− are such that u(λ+

u− ) = u− + ∆u, u(λ+
u− ) = u− − ∆u and

FK
λ,∆u(x) = FK

λ+
u
(x)− FK

λ−u
(x).

Next, Theorem 1 proves how a concave transformation ϕ(x) of a random variable
x produces fragility.
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Fragility Transfer Theorem

Theorem 17.1.
Let, with the above notations, ϕ : R → R be a twice differentiable function such that
ϕ(Ω) = Ω and for any x < Ω, dϕ

dx (x) > 0. The random variable Y = ϕ(X) is more fragile
at level L = ϕ(K) and pdf gλ than X at level K and pdf fλ if, and only if, one has:

∫ Ω

−∞
HK

λ (x)
d2 ϕ

dx2 (x)dx < 0

Where

HK
λ (x) =

∂PK
λ

∂λ
(x)

/
∂PK

λ

∂λ
(Ω) −

∂Pλ

∂λ
(x)
/

∂Pλ

∂λ
(Ω) (17.19)

and where

Pλ(x) =
∫ x

−∞
Fλ(t)dt (17.20)

is the price of the “put option” on Xλ with “strike” x and

PK
λ (x) =

∫ x

−∞
FK

λ (t)dt

is that of a "put option" with "strike" x and "European down-and-in barrier" at K.

H can be seen as a transfer function, expressed as the difference between two
ratios. For a given level x of the random variable on the left hand side of Ω, the
second one is the ratio of the vega of a put struck at x normalized by that of a put
"at the money" (i.e. struck at Ω), while the first one is the same ratio, but where
puts struck at x and Ω are "European down-and-in options" with triggering barrier
at the level K.

The proof is detailed in [105] and [? ].
Fragility Exacerbation Theorem

Theorem 17.2.
With the above notations, there exists a threshold Θλ < Ω such that, if K ≤ Θλ then
HK

λ (x) > 0 for x ∈ (∞, κλ] with K < κlambda < Ω.As a consequence, if the change
of variable ϕ is concave on (−∞, κλ] and linear on [κλ, Ω], then Y is more fragile at
L = ϕ(K)than X at K.

One can prove that, for a monomodal distribution, Θλ < κλ < Ω (see discussion
below), so whatever the stress level K below the threshold Θλ, it suffices that the
change of variable ϕ be concave on the interval (−∞, Θλ] and linear on [Θlambda, Ω]
for Y to become more fragile at L than X at K. In practice, as long as the change of
variable is concave around the stress level K and has limited convexity/concavity
away from K, the fragility of Y is greater than that of X.

Figure 17.2 shows the shape of HK
λ (x) in the case of a Gaussian distribution where

λ is a simple scaling parameter (λ is the standard deviation σ) and Ω = 0. We
represented K = –2λ while in this Gaussian case, Θλ = –1.585λ.
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17.2 effect of nonlinearity on intrinsic fragility

Figure 17.2: The Transfer function H for different portions of the distribution: its sign flips
in the region slightly below Ω

Discussion

Monomodal case

We say that the family of distributions ( fλ) is left-monomodal if there exists Kλ < Ω
such that ∂ fλ

∂λ > 0 on (–∞, κλ] and ∂ fλ
∂λ 6 0 on [µλ, Ω]. In this case ∂Pλ

∂λ is a convex
function on the left half-line (–∞, µλ], then concave after the inflexion point µλ. For

K ≤ µλ, the function ∂PK
λ

∂λ coincides with ∂Pλ
∂λ on (–∞, K], then is a linear extension,

following the tangent to the graph of ∂Pλ
∂λ in K (see graph below). The value of

∂PK
λ

∂λ (Ω) corresponds to the intersection point of this tangent with the vertical axis.

It increases with K, from 0 when K → –∞ to a value above ∂Pλ
∂λ (Ω) when K =

µλ. The threshold Θλ corresponds to the unique value of K such that ∂PK
λ

∂λ (Ω) =
∂Pλ
∂λ (Ω) . When K < Θλ then Gλ(x) = ∂Pλ

∂λ (x)
/

∂Pλ
∂λ (Ω) and GK

λ (x) = ∂PK
λ

∂λ (x)
/

∂PK
λ

∂λ (Ω)

are functions such that Gλ(Ω) = GK
λ (Ω) = 1 and which are proportional for x ≤ K,

the latter being linear on [K, Ω]. On the other hand, if K < Θλ then ∂PK
λ

∂λ (Ω) < ∂Pλ
∂λ (Ω)

and Gλ(K) < GK
λ (K), which implies that Gλ(x) < GK

λ (x) for x ≤ K. An elementary
convexity analysis shows that, in this case, the equation Gλ(x) = GK

λ (x) has a unique
solution κλ with µlambda < κλ < Ω. The “transfer” function HK

λ (x) is positive for
x < κλ, in particular when x ≤ µλ and negative for κλ < x < Ω.

Scaling Parameter

We assume here that λ is a scaling parameter, i.e. Xλ = Ω + λ(X1 −Ω). In this
case, as we saw above, we have

fλ(x) =
1
λ

f1

(
Ω +

x−Ω
λ

)
, Fλ(x) = F1

(
Ω +

x−Ω
λ

)

Pλ(x) = λP1

(
Ω +

x−Ω
λ

)
and s−(λ) = λs−(1).

Hence
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Figure 17.3: The distribution of Gλ and the various derivatives of the unconditional shortfalls

ξ(K, s−(λ)) = (Ω− K)F1

(
Ω +

K−Ω
λ

)
+ λP1

(
Ω +

K−Ω
λ

)
(17.21)

∂ξ

∂s−
(K, s−) =

1
s−(1)

∂ξ

∂λ
(K, λ)

=
1

s−(λ)

(
Pλ(K) + (Ω− K)Fλ(K) + (Ω− K)2 fλ(K)

)
(17.22)

When we apply a nonlinear transformation ϕ, the action of the parameter λ is
no longer a scaling: when small negative values of X are multiplied by a scalar λ,
so are large negative values of X. The scaling λ applies to small negative values of
the transformed variable Y with a coefficient dϕ

dx (0), but large negative values are

subject to a different coefficient dϕ
dx (K), which can potentially be very different.

17.3 fragility drift

To summarize, textitFragility is defined at as the sensitivity – i.e. the first partial
derivative – of the tail estimate ξ with respect to the left semi-deviation s–. Let us
now define the fragility drift:

V′K(X, fλ, K, s−) =
∂2ξ

∂K∂s−
(K, s−) (17.23)
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In practice, fragility always occurs as the result of fragility, indeed, by definition,
we know that ξ(Ω, s–) = s–, hence V(X, f λ, Ω, s–) = 1. The fragility drift measures the
speed at which fragility departs from its original value 1 when K departs from the
center Ω.

17.3.1 Second-order Fragility

The second-order fragility is the second order derivative of the tail estimate ξ with
respect to the semi-absolute deviation s–:

V′s− (X, fλ, K, s−) =
∂2ξ

(∂s−)2 (K, s−)

As we shall see later, the second-order fragility drives the bias in the estimation of
stress tests when the value of s– is subject to uncertainty, through Jensen’s inequal-
ity.

17.4 expressions of robustness and antifragility

Antifragility is not the simple opposite of fragility, as we saw in Table 1. Measuring
antifragility, on the one hand, consists of the flipside of fragility on the right-hand
side, but on the other hand requires a control on the robustness of the probability
distribution on the left-hand side. From that aspect, unlike fragility, antifragility
cannot be summarized in one single figure but necessitates at least two of them.

When a random variable depends on another source of randomness: Yλ = ϕ(Xλ),
we shall study the antifragility of Yλ with respect to that of Xλ and to the properties
of the function ϕ.

17.4.1 Definition of Robustness

Let (Xλ) be a one-parameter family of random variables with pdf f λ. Robustness
is an upper control on the fragility of X, which resides on the left hand side of the
distribution.

We say that f λ is b-robust beyond stress level K < Ω if V(Xλ, f λ, K’, s(λ)) ≤ b for any
K’ ≤ K. In other words, the robustness of f λ on the half-line (–∞, K] is

R(−∞,K](Xλ, fλ, K, s−(λ)) = max
K′6K

V(Xλ, fλ, K′, s−(λ)), (17.24)

so that b-robustness simply means

R(−∞,K](Xλ, fλ, K, s−(λ)) 6 b
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We also define b-robustness over a given interval [K1, K2] by the same inequality
being valid for any K’ ∈ [K1, K2]. In this case we use

R[K1 ,K2](Xλ, fλ, K, s−(λ)) =

max
K16K′6K2

V(Xλ, fλ, K′, s−(λ)). (17.25)

Note that the lower R, the tighter the control and the more robust the distribution
f λ.

Once again, the definition of b-robustness can be transposed, using finite differ-
ences V(Xλ, f λ, K’, s–(λ), ∆s).

In practical situations, setting a material upper bound b to the fragility is partic-
ularly important: one need to be able to come with actual estimates of the impact
of the error on the estimate of the left-semi-deviation. However, when dealing
with certain class of models, such as Gaussian, exponential of stable distributions,
we may be lead to consider asymptotic definitions of robustness, related to certain
classes.

For instance, for a given decay exponent a > 0, assuming that fλ(x) = O(eax)
when x→ –∞, the a-exponential asymptotic robustness of Xλ below the level K is:

Rexp(Xλ, fλ, K, s−(λ), a)

= max
K′6K

(
ea(Ω−K′)V(Xλ, fλ, K′, s−(λ))

)
(17.26)

If one of the two quantities ea(Ω−K′) fλ(K′) or ea(Ω−K′)V(Xλ, fλ, K′, s−(λ)) is not bounded
from above when K→ –∞, then Rexp = +∞ and Xλ is considered as not a-exponentially
robust.

Similarly, for a given power α > 0, and assuming that f λ(x) = O(x–α) when x →
–∞, the α-power asymptotic robustness of Xλ below the level K is:

Rpow(Xλ, fλ, K, s−(λ), a) =

max
K′6K

(
(Ω− K′)α−2V(Xλ, fλ, K′, s−(λ))

)
If one of the two quantities

(Ω− K′)α fλ(K′)

(Ω− K′)α−2V(Xλ, fλ, K′, s−(λ))

is not bounded from above when K′ → −∞, then Rpow = +∞ and Xλ is considered
as not α-power robust. Note the exponent α – 2 used with the fragility, for homo-
geneity reasons, e.g. in the case of stable distributions, when a random variable
Yλ = ϕ(Xλ) depends on another source of risk Xλ.

Definition 17.1.
Left-Robustness (monomodal distribution). A payoff y = ϕ(x) is said (a, b)-robust below

292



17.4 expressions of robustness and antifragility

L = ϕ(K) for a source of randomness X with pdf fλ assumed monomodal if, letting gλ be
the pdf of Y = ϕ(X), one has,for any K′ ≤ K and L = ϕ(K):

VX
(
Y, gλ, L′, s−(λ)

)
6 aV

(
X, fλ, K′, s−(λ)

)
+ b (17.27)

The quantity b is of order deemed of “negligible utility” (subjectively), that is,
does not exceed some tolerance level in relation with the context, while a is a scaling
parameter between variables X and Y.

Note that robustness is in effect impervious to changes of probability distribu-
tions. Also note that this measure of robustness ignores first order variations since
owing to their higher frequency, these are detected (and remedied) very early on.

Example of Robustness (Barbells):
a. trial and error with bounded error and open payoff
b. for a "barbell portfolio " with allocation to numeraire securities up to 80%

of portfolio, no perturbation below K set at 0.8 of valuation will represent any
difference in result, i.e. q = 0. The same for an insured house (assuming the risk of
the insurance company is not a source of variation), no perturbation for the value
below K, equal to minus the insurance deductible, will result in significant changes.

c. a bet of amount B (limited liability) is robust, as it does not have any sensitivity
to perturbations below 0.

17.4.2 Antifragility

The second condition of antifragility regards the right hand side of the distribution.
Let us define the right-semi-deviation of X :

s+(λ) =
∫ +∞

Ω
(x−Ω) fλ(x)dx

And, for H > L > Ω :

ξ+(L, H, s+(λ)) =
∫ H

L
(x−Ω) fλ(x)dx

W(X, fλ, L, H, s+) =
∂ξ+(L, H, s+)

∂s+

=
(∫ H

L
(x−Ω)

∂ fλ

∂λ
(x)dx

)(∫ +∞

Ω
(x−Ω)

∂ fλ

∂λ
(x)dx

)−1

When Y = ϕ is a variable depending on a source of noise X,we define:

WX(Y, gλ, ϕ(L), ϕ(H), s+) =(∫ ϕ(H)

ϕ(L)
(y− ϕ(Ω))

∂gλ

∂λ
(y)dy

)(∫ +∞

Ω
(x−Ω)

∂ fλ

∂λ
(x)dx

)−1
(17.28)

Definition 2b, Antifragility (monomodal distribution). A payoff y = ϕ(x) is locally
antifragile over the range [L, H] if
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1. It is b-robust below Ω for some b > 0

2. WX (Y, gλ, ϕ(L), ϕ(H), s+(λ)) > aW (X, fλ, L, H, s+(λ)) where a = u+(λ)
s+(λ)

The scaling constant a provides homogeneity in the case where the relation between
X and y is linear. In particular, nonlinearity in the relation between X and Y impacts
robustness.

The second condition can be replaced with finite differences ∆u and ∆s, as long
as ∆u/u = ∆s/s.

17.4.3 Remarks

Fragility is K-specific We are only concerned with adverse events below a certain
pre-specified level, the breaking point. Exposures A can be more fragile than ex-
posure B for K = 0, and much less fragile if K is, say, 4 mean deviations below 0.
We may need to use finite ∆s to avoid situations as we will see of vega-neutrality
coupled with short left tail.

Effect of using the wrong distribution or model Comparing V(X, f , K, s−, ∆s) and
the alternative distribution V(X, f ∗, K, s∗, ∆s), where f ∗ is the "true" distribution,
the measure of fragility provides an acceptable indication of the sensitivity of a
given outcome – such as a risk measure – to model error, provided no “paradoxical
effects” perturbate the situation. Such “paradoxical effects” are, for instance, a
change in the direction in which certain distribution percentiles react to model
parameters, like s–. It is indeed possible that nonlinearity appears between the
core part of the distribution and the tails such that when s− increases, the left tail
starts fattening – giving a large measured fragility – then steps back – implying that
the real fragility is lower than the measured one. The opposite may also happen,
implying a dangerous under-estimate of the fragility. These nonlinear effects can
stay under control provided one makes some regularity assumptions on the actual
distribution, as well as on the measured one. For instance, paradoxical effects are
typically avoided under at least one of the following three hypotheses:

1. The class of distributions in which both f and f* are picked are all monomodal,
with monotonous dependence of percentiles with respect to one another.

2. The difference between percentiles of f and f* has constant sign (i.e. f* is either
always wider or always narrower than f at any given percentile)

3. For any strike level K (in the range that matters), the fragility measure V
monotonously depends on s– on the whole range where the true value s* can
be expected. This is in particular the case when partial derivatives ∂kV/∂sk all
have the same sign at measured s– up to some order n, at which the partial
derivative has that same constant sign over the whole range on which the true
value s* can be expected. This condition can be replaced by an assumption on
finite differences approximating the higher order partial derivatives, where n
is large enough so that the interval [s−, n∆s]covers the range of possible values
of s∗. Indeed, in this case, f difference estimate of fragility uses evaluations of
ξ at points spanning this interval. [REWRITE LAST SENTENCE]
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-¶

17.4.4 Unconditionality of the shortfall measure ξ

Many, when presenting shortfall,deal with the conditional shortfall
∫ K
−∞ x f (x) dx

/∫ K
−∞ f (x) dx;

while such measure might be useful in some circumstances, its sensitivity is not in-
dicative of fragility in the sense used in this discussion. The unconditional tail
expectation ξ =

∫ K
−∞ x f (x) dx is more indicative of exposure to fragility. It is

also preferred to the raw probability of falling below K, which is
∫ K
−∞ f (x) dx, as

the latter does not include the consequences. For instance, two such measures∫ K
−∞ f (x) dx and

∫ K
−∞ g(x) dx may be equal over broad values of K; but the expecta-

tion
∫ K
−∞ x f (x) dx can be much more consequential than

∫ K
−∞ x g(x) dx as the cost

of the break can be more severe and we are interested in its “vega” equivalent.

295





18 A P P L I C AT I O N S TO M O D E L
E R R O R

In the cases where Y depends on X, among other variables, often x is treated as
non-stochastic, and the underestimation of the volatility of x maps immediately
into the underestimation of the left tail of Y under two conditions:

1. X is stochastic and its stochastic character is ignored (as if it had zero variance
or mean deviation)

2. Y is concave with respect to X in the negative part of the distribution, below
Ω

"Convexity Bias " or Jensen’s Inequality Effect: Further, missing the stochasticity
under the two conditions a) and b) , in the event of the concavity applying above Ω
leads to the negative convexity bias from the lowering effect on the expectation of
the dependent variable Y.

18.0.5 Example:Application to Budget Deficits

Example: A government estimates unemployment for the next three years as aver-
aging 9%; it uses its econometric models to issue a forecast balance B of 200 billion
deficit in the local currency. But it misses (like almost everything in economics) that
unemployment is a stochastic variable. Employment over 3 years periods has fluc-
tuated by 1% on average. We can calculate the effect of the error with the following:
âĂć Unemployment at 8% , Balance B(8%) = -75 bn (improvement of 125bn) âĂć
Unemployment at 9%, Balance B(9%)= -200 bn âĂć Unemployment at 10%, Balance
B(10%)= –550 bn (worsening of 350bn)

The convexity bias from underestimation of the deficit is by -112.5bn, since

B(8%) + B(10%)
2

= −312.5

Further look at the probability distribution caused by the missed variable (assuming
to simplify deficit is Gaussian with a Mean Deviation of 1% )

Adding Model Error and Metadistributions: Model error should be integrated
in the distribution as a stochasticization of parameters. f and g should subsume
the distribution of all possible factors affecting the final outcome (including the
metadistribution of each). The so-called "perturbation " is not necessarily a change
in the parameter so much as it is a means to verify whether f and g capture the full
shape of the final probability distribution.

Any situation with a bounded payoff function that organically truncates the left
tail at K will be impervious to all perturbations affecting the probability distribution
below K.
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Figure 18.1: Histogram from simulation of government deficit as a left-tailed random vari-
able as a result of randomizing unemployment of which it is a convex function. The method
of point estimate would assume a Dirac stick at -200, thus underestimating both the expected
deficit (-312) and the skewness (i.e., fragility) of it.

For K = 0, the measure equates to mean negative semi-deviation (more po-
tent than negative semi-variance or negative semi-standard deviation often used in
financial analyses).

18.0.6 Model Error and Semi-Bias as Nonlinearity from Missed Stochasticity of Vari-
ables

Model error often comes from missing the existence of a random variable that is
significant in determining the outcome (say option pricing without credit risk). We
cannot detect it using the heuristic presented in this paper but as mentioned earlier
the error goes in the opposite direction as model tend to be richer, not poorer, from
overfitting.

But we can detect the model error from missing the stochasticity of a variable
or underestimating its stochastic character (say option pricing with non-stochastic
interest rates or ignoring that the “volatility” σ can vary).

Missing Effects: The study of model error is not to question whether a model is
precise or not, whether or not it tracks reality; it is to ascertain the first and second
order effect from missing the variable, insuring that the errors from the model don’t
have missing higher order terms that cause severe unexpected (and unseen) biases
in one direction because of convexity or concavity, in other words, whether or not
the model error causes a change in z.
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18.1 model bias, second order effects, and fragility

18.1 model bias, second order effects, and fragility
Having the right model (which is a very generous assumption), but being uncer-
tain about the parameters will invariably lead to an increase in model error in the
presence of convexity and nonlinearities.

As a generalization of the deficit/employment example used in the previous
section, say we are using a simple function:

f ( x | α )

Where α is supposed to be the average expected rate, where we take ϕ as the
distribution of α over its domain ℘α

α =
∫
℘α

α ϕ(α) dα

The mere fact that α is uncertain (since it is estimated) might lead to a bias if we
perturb from the outside (of the integral), i.e. stochasticize the parameter deemed
fixed. Accordingly, the convexity bias is easily measured as the difference between
a) f integrated across values of potential α and b) f estimated for a single value of
α deemed to be its average. The convexity bias ωA becomes:

ωA ≡
∫
℘x

∫
℘α

f (x | α ) ϕ (α ) dα dx−
∫
℘x

f (x
∣∣∣∣(∫

℘α

α ϕ (α ) dα

)
)dx (18.1)

And ωB the missed fragility is assessed by comparing the two integrals below K,
in order to capture the effect on the left tail:

ωB(K) ≡
∫ K

−∞

∫
℘α

f (x | α ) ϕ (α ) dα dx−
∫ K

−∞
f (x

∣∣∣∣(∫
℘α

α ϕ (α ) dα

)
)dx (18.2)

Which can be approximated by an interpolated estimate obtained with two values
of α separated from a mid point by ∆α a mean deviation of α and estimating

ωB(K) ≡
∫ K

−∞

1
2
( f (x |ᾱ + ∆α) + f (x |ᾱ− ∆α))dx−

∫ K

−∞
f (x |ᾱ) dx (18.3)

We can probe ωB by point estimates of f at a level of X ≤ K

ω′B(X) =
1
2
( f (X |ᾱ + ∆α) + f (X |ᾱ− ∆α))− f (X |ᾱ) (18.4)

So that

ωB(K) =
∫ K

−∞
ω′B(x)dx (18.5)

which leads us to the fragility heuristic. In particular, if we assume that ωB(X)
′

has a constant sign for X ≤ K, then ωB(K) has the same sign.
The fragility heuristic is presented in the next Chapter.
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19 T H E F R A G I L I T Y M E A S U R E M E N T
H E U R I S T I C S

Chapter Summary 18: Presents the IMF fragility heuristics, particularly in the
improvement of stress testing.

19.0.1 The Fragility/Model Error Detection Heuristic (detecting ωA and ωB when
cogent)

19.1 example 1 (detecting risk not shown by stress
test)

Or detecting ωa and ωb when cogent. The famous firm Dexia went into financial
distress a few days after passing a stress test “with flying colors”.

If a bank issues a so-called "stress test" (something that has not proven very
satisfactory), off a parameter (say stock market) at -15%. We ask them to recompute
at -10% and -20%. Should the exposure show negative asymmetry (worse at -20%
than it improves at -10%), we deem that their risk increases in the tails. There
are certainly hidden tail exposures and a definite higher probability of blowup in
addition to exposure to model error.

Note that it is somewhat more effective to use our measure of shortfall in Defi-
nition, but the method here is effective enough to show hidden risks, particularly
at wider increases (try 25% and 30% and see if exposure shows increase). Most
effective would be to use power-law distributions and perturb the tail exponent to
see symmetry.

Example 2 (Detecting Tail Risk in Overoptimized System, ωB). Raise airport
traffic 10%, lower 10%, take average expected traveling time from each, and check
the asymmetry for nonlinearity. If asymmetry is significant, then declare the system
as overoptimized. (Both ωA and ωB as thus shown.

The same procedure uncovers both fragility and consequence of model error (po-
tential harm from having wrong probability distribution, a thin- tailed rather than
a fat-tailed one). For traders (and see Gigerenzer’s discussions, in Gigerenzer and
Brighton (2009)[49], Gigerenzer and Goldstein(1996)[50]) simple heuristics tools de-
tecting the magnitude of second order effects can be more effective than more com-
plicated and harder to calibrate methods, particularly under multi-dimensionality.
See also the intuition of fast and frugal in Derman and Wilmott (2009)[23], Haug
and Taleb (2011)[56].

The Fragility Heuristic Applied to Model Error

1- First Step (first order). Take a valuation. Measure the sensitivity to all parameters
p determining V over finite ranges ∆p. If materially significant, check if stochas-
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ticity of parameter is taken into account by risk assessment. If not, then stop and
declare the risk as grossly mismeasured (no need for further risk assessment). 2-
Second Step (second order). For all parameters p compute the ratio of first to sec-
ond order effects at the initial range ∆p = estimated mean deviation. H (∆p) ≡ µ′

µ ,
where

µ′ (∆p) ≡ 1
2

(
f
(

p +
1
2

∆p
)

+ f
(

p− 1
2

∆p
))

2-Third Step. Note parameters for which H is significantly > or < 1. 3- Fourth
Step: Keep widening ∆p to verify the stability of the second order effects.

19.2 the heuristic applied to a stress testing
[INSERT FROM IMF PAPER TALEB CANETTI ET AL]

In place of the standard, one-point estimate stress test S1, we issue a "triple", S1,
S2, S3, where S2 and S3 are S1 ± ∆p. Acceleration of losses is indicative of fragility.

Remarks a. Simple heuristics have a robustness (in spite of a possible bias) com-
pared to optimized and calibrated measures. Ironically, it is from the multiplication
of convexity biases and the potential errors from missing them that calibrated mod-
els that work in-sample underperform heuristics out of sample (Gigerenzer and
Brighton, 2009). b. Heuristics allow to detection of the effect of the use of the
wrong probability distribution without changing probability distribution (just from
the dependence on parameters). c. The heuristic improves and detects flaws in all
other commonly used measures of risk, such as CVaR, "expected shortfall", stress-
testing, and similar methods have been proven to be completely ineffective (Taleb,
2009). d. The heuristic does not require parameterization beyond varying δp.

19.2.1 Further Applications Investigated in Next Chapters

[TO EXPAND]
In parallel works, applying the "simple heuristic " allows us to detect the follow-

ing “hidden short options” problems by merely perturbating a certain parameter
p:

i- Size and pseudo-economies of scale.

ii- Size and squeezability (nonlinearities of squeezes in costs per unit).

iii- Specialization (Ricardo) and variants of globalization.

iv- Missing stochasticity of variables (price of wine).

v- Portfolio optimization (Markowitz).

vi- Debt and tail exposure.

vii- Budget Deficits: convexity effects explain why uncertainty lengthens, doesn’t
shorten expected deficits.
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19.3 stress tests

viii- Iatrogenics (medical) or how some treatments are concave to benefits, convex
to errors.

ix- Disturbing natural systems.1

19.3 stress tests

1 Acknowledgments: Bruno Dupire, Emanuel Derman, Jean-Philippe Bouchaud, Elie Canetti. Presented
at JP Morgan, New York, June 16, 2011; CFM, Paris, June 17, 2011; GAIM Conference, Monaco, June 21,
2011; Max Planck Institute, BERLIN, Summer Institute on Bounded Rationality 2011 - Foundations of an
Interdisciplinary Decision Theory- June 23, 2011; Eighth International Conference on Complex Systems -
BOSTON, July 1, 2011, Columbia University September 24 2011.
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19.4 general methodology
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20 F R A G I L I T Y A N D E C O N O M I C
M O D E L S

20.1 the markowitz inconsistency
Assume that someone tells you that the probability of an event is exactly zero. You
ask him where he got this from."Baal told me" is the answer. In such case, the
person is coherent, but would be deemed unrealistic by non-Baalists. But if on the
other hand, the person tells you"I estimated it to be zero," we have a problem. The
person is both unrealistic and inconsistent. Some- thing estimated needs to have
an estimation error. So probability cannot be zero if it is estimated, its lower bound
is linked to the estimation error; the higher the estima- tion error, the higher the
probability, up to a point. As with Laplace’s argument of total ignorance, an infinite
estimation error pushes the probability toward 1

2 .
We will return to the implication of the mistake; take for now that anything es-

timating a parameter and then putting it into an equation is different from estimat-
ing the equation across parameters (same story as the health of the grandmother,
the average temperature, here "estimated" is irrelevant, what we need is average
health across temperatures). And Markowitz showed his incoherence by starting
his "seminal" paper with "Assume you know E and V" (that is, the expectation and
the variance). At the end of the paper he accepts that they need to be estimated,
and what is worse, with a combination of statistical techniques and the "judgment
of practical men." Well, if these parameters need to be estimated, with an error,
then the deriva- tions need to be written differently and, of course, we would have
no paper–and no Markowitz paper, no blowups, no modern finance, no fragilistas
teaching junk to students. . . . Economic models are extremely fragile to assump-
tions, in the sense that a slight alteration in these assumptions can, as we will see,
lead to extremely consequential differences in the results. And, to make matters
worse, many of these models are "back-fit" to assumptions, in the sense that the hy-
potheses are selected to make the math work, which makes them ultrafragile and
ultrafragilizing.

20.2 application: ricardian model and left tail ex-
posure

For almost two hundred years, we’ve been talking about an idea by the economist
David Ricardo called "comparative advantage." In short, it says that a country
should have a certain policy based on its comparative advantage in wine or clothes.
Say a country is good at both wine and clothes, better than its neighbors with
whom it can trade freely. Then the visible optimal strategy would be to specialize
in either wine or clothes, whichever fits the best and minimizes opportunity costs.
Everyone would then be happy. The analogy by the economist Paul Samuelson is
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that if someone happens to be the best doctor in town and, at the same time, the
best secretary, then it would be preferable to be the higher –earning doctor –as it
would minimize opportunity losses–and let someone else be the secretary and buy
secretarial ser- vices from him.

We agree that there are benefits in some form of specialization, but not from
the models used to prove it. The flaw with such reasoning is as follows. True, it
would be inconceivable for a doctor to become a part-time secretary just because
he is good at it. But, at the same time, we can safely assume that being a doctor
insures some professional stability: People will not cease to get sick and there is
a higher social status associated with the profession than that of secretary, making
the profession more desirable. But assume now that in a two-country world, a
country specialized in wine, hoping to sell its specialty in the market to the other
country, and that suddenly the price of wine drops precipitously. Some change in
taste caused the price to change. Ricardo’s analysis assumes that both the market
price of wine and the costs of production remain constant, and there is no "second
order" part of the story.

RICARDO’S ORIGINAL EXAMPLE (COSTS OF PRODUCTION PER UNIT)

Cloth Wine

Britain 100 110

Portugal 90 80

The logic The table above shows the cost of production, normalized to a selling
price of one unit each, that is, assuming that these trade at equal price (1 unit of
cloth for 1 unit of wine). What looks like the paradox is as follows: that Portugal
produces cloth cheaper than Britain, but should buy cloth from there instead, using
the gains from the sales of wine. In the absence of transaction and transportation
costs, it is efficient for Britain to produce just cloth, and Portugal to only produce
wine.

The idea has always attracted economists because of its paradoxical and counter-
intuitive aspect. Clearly one cannot talk about returns and gains without discount-
ing these benefits by the offsetting risks. Many discussions fall into the critical and
dangerous mistake of confusing function of average and average of function. Now
consider the price of wine and clothes variable–which Ricardo did not assume–
with the numbers above the unbiased average long-term value. Further assume
that they follow a fat-tailed distribution. Or consider that their costs of production
vary according to a fat-tailed distribution.

If the price of wine in the international markets rises by, say, 40 %, then there
are clear benefits. But should the price drop by an equal percentage, âĹŠ40 %, then
massive harm would ensue, in magnitude larger than the benefits should there be
an equal rise. There are concavities to the exposure–severe concavities.

And clearly, should the price drop by 90 percent, the effect would be disastrous.
Just imagine what would happen to your household should you get an instant and
unpredicted 40 percent pay cut. Indeed, we have had problems in history with
coun- tries specializing in some goods, commodities, and crops that happen to be
not just volatile, but extremely volatile. And disaster does not necessarily come
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from varia- tion in price, but problems in production: suddenly, you can’t produce
the crop be- cause of a germ, bad weather, or some other hindrance.

A bad crop, such as the one that caused the Irish potato famine in the decade
around 1850, caused the death of a million and the emigration of a million more
(Ireland’s entire population at the time of this writing is only about six million, if
one includes the northern part). It is very hard to reconvert resources–unlike the
case in the doctor-typist story, countries don’t have the ability to change. Indeed,
monocul- ture (focus on a single crop) has turned out to be lethal in history–one
bad crop leads to devastating famines.

The other part missed in the doctor-secretary analogy is that countries don’t
have family and friends. A doctor has a support community, a circle of friends, a
collective that takes care of him, a father-in-law to borrow from in the event that he
needs to reconvert into some other profession, a state above him to help. Countries
don’t. Further, a doctor has savings; countries tend to be borrowers.

So here again we have fragility to second-order effects.

Probability Matching The idea of comparative advantage has an analog in proba-
bility: if you sample from an urn (with replacement) and get a black ball 60 percent
of the time, and a white one the remaining 40 percent, the optimal strategy, accord-
ing to textbooks, is to bet 100 percent of the time on black. The strategy of betting
60 percent of the time on black and 40 percent on white is called "probability match-
ing" and considered to be an error in the decision-science literature (which I remind
the reader is what was used by Triffat in Chapter 10). People’s instinct to engage in
probability matching appears to be sound, not a mistake. In nature, probabilities
are unstable (or unknown), and probability matching is similar to redundancy, as
a buf- fer. So if the probabilities change, in other words if there is another layer of
random- ness, then the optimal strategy is probability matching.

How specialization works: The reader should not interpret what I am saying to
mean that specialization is not a good thing–only that one should establish such
specialization after addressing fragility and second-order effects. Now I do believe
that Ricardo is ultimately right, but not from the models shown. Organically, sys-
tems without top-down controls would specialize progressively, slowly, and over
a long time, through trial and error, get the right amount of specialization–not
through some bureaucrat using a model. To repeat, systems make small errors, de-
sign makes large ones.

So the imposition of Ricardo’s insight-turned-model by some social planner would
lead to a blowup; letting tinkering work slowly would lead to efficiency–true effi-
ciency. The role of policy makers should be to, via negativa style, allow the emer-
gence of specialization by preventing what hinders the process.

Portfolio fallacies Note one fallacy promoted by Markowitz users: portfolio the-
ory entices people to diversify, hence it is better than nothing. Wrong, you finance
fools: it pushes them to optimize, hence overallocate. It does not drive people to
take less risk based on diversification, but causes them to take more open positions
owing to perception of offsetting statistical properties–making them vulnerable to
model error, and especially vulnerable to the underestimation of tail events. To see
how, consider two investors facing a choice of allocation across three items: cash,
and se- curities A and B. The investor who does not know the statistical properties
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MODEL SOURCE OF FRAGILITY REMEDY
Portfolio theory,
mean-variance, etc.

Assuming knowledge of
the parameters, not inte-
grating models across pa-
rameters, relying on (very
unstable) correlations. As-
sumes ωA (bias) and ωB
(fragility) = 0

1/n (spread as large a
number of exposures as
manageable), barbells,
progressive and organic
construction, etc.

Ricardian compara-
tive advantage

Missing layer of random-
ness in the price of wine
may imply total rever-
sal of allocation. As-
sumes ωA (bias) and ωB
(fragility) = 0

Natural systems find their
own allocation through
tinkering

Samuelson opti-
mization

Concentration of sources
of randomness under con-
cavity of loss function. As-
sumes ωA (bias) and ωB
(fragility) = 0

Distributed randomness

Arrow-Debreu lat-
tice state-space

Ludic fallacy: assumes
exhaustive knowledge of
outcomes and knowledge
of probabilities. Assumes
ωA (bias), ωB (fragility),
and ωC (antifragility) = 0

Use of metaprobabilities
changes entire model im-
plications

Dividend cash flow
models

Missing stochasticity
causing convexity effects.
Mostly considers ÏL’C
(antifragility) =0

Heuristics

of A and B and knows he doesn’t know will allocate, say, the portion he does not
want to lose to cash, the rest into A and B–according to whatever heuristic has been
in traditional use. The investor who thinks he knows the statistical properties, with
parameters σa, σB, ρA,B, will allocate ωA , ωB in a way to put the total risk at some
target level (let us ignore the expected return for this). The lower his perception of
the correlation ρA,B, the worse his exposure to model error. Assuming he thinks
that the correlation ρA,B, is 0, he will be overallocated by 1

3 for extreme events. But
if the poor investor has the illusion that the correlation is 1, he will be maximally
overallocated to his investments A and B. If the investor uses leverage, we end up
with the story of Long-Term Capital Management, which turned out to be fooled
by the parameters. (In real life, unlike in economic papers, things tend to change;
for Baal’s sake, they change!) We can repeat the idea for each parameter σand see
how lower perception of this σleads to overallocation.

I noticed as a trader–and obsessed over the idea–that correlations were never the
same in different measurements. Unstable would be a mild word for them: 0.8 over
a long period becomes 0.2 over another long period. A pure sucker game. At times
of stress, correlations experience even more abrupt changes–without any reliable
regularity, in spite of attempts to model "stress correlations." Taleb (1997) deals
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with the effects of stochastic correlations: One is only safe shorting a correlation at
1, and buying it at âĹŠ1–which seems to correspond to what the 1/n heuristic does.
Kelly Criterion vs. Markowitz: In order to implement a full Markowitz-style optimi-
zation, one needs to know the entire joint probability distribution of all assets for
the entire future, plus the exact utility function for wealth at all future times. And
with- out errors! (We saw that estimation errors make the system explode.) Kelly’s
method, developed around the same period, requires no joint distribution or utility
function. In practice one needs the ratio of expected profit to worst-case return–
dynamically adjusted to avoid ruin. In the case of barbell transformations, the
worst case is guar- anteed. And model error is much, much milder under Kelly
criterion. Thorp (1971, 1998), Haigh (2000).

The formidable Aaron Brown holds that Kelly’s ideas were rejected by economists–
in spite of the practical appeal–because of their love of general theories for all asset
prices.

Note that bounded trial and error is compatible with the Kelly criterion when
one has an idea of the potential return–even when one is ignorant of the returns, if
losses are bounded, the payoff will be robust and the method should outperform
that of Fragilista Markowitz.

Corporate Finance: In short, corporate finance seems to be based on point projec-
tions, not distributional projections; thus if one perturbates cash flow projections,
say, in the Gordon valuation model, replacing the fixed–and known–growth (and
other parameters) by continuously varying jumps (particularly under fat-tailed dis-
tributions), companies deemed âĂIJexpensive,âĂİ or those with high growth, but
low earnings, could markedly increase in expected value, something the market
prices heuristically but without explicit reason.

Conclusion and summary: Something the economics establishment has been
missing is that having the right model (which is a very generous assumption),
but being un- certain about the parameters will invariably lead to an increase in
fragility in the presence of convexity and nonlinearities.

20.2.1 Error and Probabilities
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21 T H E O R I G I N O F T H I N -TA I L S

Chapter Summary 19: The literature of heavy tails starts with a random
walk and finds mechanisms that lead to fat tails under aggregation. We
follow the inverse route and show how starting with fat tails we get to thin-
tails from the probability distribution of the response to a random variable.
We introduce a general dose-response curve show how the left and right-
boundedness of the reponse in natural things leads to thin-tails, even when
the “underlying” variable of the exposure is fat-tailed.

The Origin of Thin Tails.

We have emprisoned the “statistical generator” of things on our planet into the
random walk theory: the sum of i.i.d. variables eventually leads to a Gaussian,
which is an appealing theory. Or, actually, even worse: at the origin lies a simpler
Bernouilli binary generator with variations limited to the set {0,1}, normalized
and scaled, under summation. Bernouilli, De Moivre, Galton, Bachelier: all used
the mechanism, as illustrated by the Quincunx in which the binomial leads to the
Gaussian. This has traditionally been the “generator” mechanism behind every-
thing, from martingales to simple convergence theorems. Every standard textbook
teaches the “naturalness” of the thus-obtained Gaussian.

In that sense, powerlaws are pathologies. Traditionally, researchers have tried
to explain fat tailed distributions using the canonical random walk generator, but
twinging it thanks to a series of mechanisms that start with an aggregation of ran-
dom variables that does not lead to the central limit theorem, owing to lack of
independence and the magnification of moves through some mechanism of conta-
gion: preferential attachment, comparative advantage, or, alternatively, rescaling,
and similar mechanisms.

But the random walk theory fails to accommodate some obvious phenomena.
First, many things move by jumps and discontinuities that cannot come from

the random walk and the conventional Brownian motion, a theory that proved to
be sticky (Mandelbrot, 1997).

Second, consider the distribution of the size of animals in nature, considered
within-species. The height of humans follows (almost) a Normal Distribution but
it is hard to find mechanism of random walk behind it (this is an observation
imparted to the author by Yaneer Bar Yam).

Third, uncertainty and opacity lead to power laws, when a statistical mechanism
has an error rate which in turn has an error rate, and thus, recursively (Taleb, 2011,
2013).

Our approach here is to assume that random variables, under absence of con-
traints, become power law-distributed. This is the default in the absence of bound-
edness or compactness. Then, the response, that is, a funtion of the random variable,
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considered in turn as an “inherited” random variable, will have different properties.
If the response is bounded, then the dampening of the tails of the inherited distribu-
tion will lead it to bear the properties of the Gaussian, or the class of distributions
possessing finite moments of all orders.

The Dose Response

Let SN(x): R→ [kL, kR], SN ∈ C∞, be a continuous function possessing derivatives(
SN)(n) (x) of all orders, expressed as an N-summed and scaled standard sigmoid

functions:

SN(x) ≡
N

∑
i=1

ak
1 + exp (−bkx + ck)

(21.1)

where ak , bk , ck are scaling constants ∈ R, satisfying:
i) SN(-∞) =kL
ii) SN(∞) =kR
and (equivalently for the first and last of the following conditions)
iii) ∂2SN

∂x2 ≥ 0 for x ∈ (-∞, k1) , ∂2SN

∂x2 < 0 for x ∈ (k2, k>2), and ∂2SN

∂x2 ≥ 0 for x ∈ (k>2,
∞), with k1 > k2 ≥ k3...≥ kN .

The shapes at different calibrations are shown in Figure 1, in which we com-
bined different values of N=2 S2 (x, a1, a2, b1, b2, c1, c2) , and the standard sigmoid
S1 (x, a1, b1, c1), with a1=1, b1=1 and c1=0. As we can see, unlike the common sig-
moid, the asymptotic response can be lower than the maximum, as our curves are
not monotonically increasing. The sigmoid shows benefits increasing rapidly (the
convex phase), then increasing at a slower and slower rate until saturation. Our
more general case starts by increasing, but the reponse can be actually negative
beyond the saturation phase, though in a convex manner. Harm slows down and
becomes “flat” when something is totally broken.

21.1 properties of the inherited probability dis-
tribution

Now let x be a random variable with distributed according to a general fat tailed
distribution, with power laws at large negative and positive values, expressed (for
clarity, without loss of generality) as a Student T Distribution with scale σ and ex-
ponent α, and support on the real line. Its domain D f = (∞, ∞), and density fσ,α(x):

x fσ,α ≡

(
α

α+ x2
σ2

) α+1
2

√
ασB

(
α
2 , 1

2

) (21.2)
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S2Hx, 1, -2, 1, 2, 1, 15L
S2Hx, 1, -2, 1, 2, 1, 25L

S2Jx, 1, -
1

2
, 2, 1, 1, 15N

S1Hx, 1, 1, 0L
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Figure 21.1: The Generalized Response Curve, S2 (x, a1, a2, b1, b2, c1, c2) , S1 (x, a1, b1, c1) The
convex part with positive first derivative has been designated as "antifragile"

where B(a, b) = (aΓ)(bΓ)
Γ(a+b) =

∫ 1
0 dtta−1(1− t)b−1. The simulation effect of the convex-

concave transformations of the terminal probability distribution is shown in Figure
2.

And the Kurtosis of the inherited distributions drops at higher σ thanks to the
boundedness of the payoff, making the truncation to the left and the right visible.
Kurtosis for f.2,3 is infinite, but in-sample will be extremely high, but, of course,
finite. So we use it as a benchmark to see the drop from the calibration of the
response curves.

Distribution Kurtosis

f.2,3(x) 86.3988

S2(1,−2, 1, 2, 1, 15) 8.77458

S2(1,−1/2, 2, 1, 1, 15) 4.08643

S1(1, 1, 0) 4.20523

Case of the standard sigmoid, i.e., N = 1

S(x) ≡ a1

1 + exp(−b1x + c1)
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Figure 21.2: Histograms for the different inherited probability distributions (simulations,N =
106)

(21.3)

g(x) is the inherited distribution, which can be shown to have a scaled domain
Dg= (kL, kR). It becomes

g(x) =

a1

 α

α+
(log( x

a1−x )+c1)
2

b12σ2

 α+1
2

√
αb1σxB

(
α
2 , 1

2

)
(a1− x)

(21.4)
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Remark 1Remark 1Remark 1: The inherited distribution from S(x) will have a compact support re-
gardless of the probability distribution of x.

21.2 conclusion and remarks
We showed the dose-response as the neglected origin of the thin-tailedness of ob-
served distributions in nature. This approach to the dose-response curve is quite
general, and can be used outside biology (say in the Kahneman-Tversky prospect
theory, in which their version of the utility concept with respect to changes in
wealth is concave on the left, hence bounded, and convex on the right.
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22 S M A L L I S B E A U T I F U L : R I S K ,
S C A L E A N D C O N C E N T R AT I O N

Chapter Summary 20: We extract the effect of size on the degradation of
the expectation of a random variable, from nonlinear response. The method
is general and allows to show the "small is beautiful" or "decentralized is
effective" or "a diverse ecology is safer" effect from a response to a stochastic
stressor and prove stochastic diseconomies of scale and concentration (with
as example the Irish potato famine and GMOs). We apply the methodology
to environmental harm using standard sigmoid dose-response to show the
need to split sources of pollution across independent

(nonsynergetic) pollutants.

22.1 introduction: the tower of babel
Diseconomies and Harm of scale Where is small beautiful and how can we detect,
even extract its effect from nonlinear response? 1 Does getting larger makes an
entity more vulnerable to errors? Does polluting or subjecting the environment
with a large quantity cause disproportional "unseen" stochastic effects? We will
consider different types of dose-response or harm-response under different classes
of probability distributions.

The situations convered include:

1. Size of items falling on your head (a large stone vs small pebbles).

2. Losses under strain.

3. Size of animals (The concavity stemming from size can be directly derived
from the difference between allometic and isometric growth, as animals scale
in a specific manner as they grow, an idea initially detected by Haldane,[46]
(on the "cube law"(TK)).

4. Quantity in a short squeeze

5. The effect of crop diversity

6. Large vs small structures (say the National Health Service vs local entities)

7. Centralized government vs municipalities

8. Large projects such as the concentration of health care in the U.K.

9. Stochastic environmental harm: when, say, polluting with K units is more
than twice as harmful than polluting with K/2 units.

1 The slogan "small is beautiful" originates with the works of Leonard Kohr [65] and his student Schu-
macher who thus titled his influential book.
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Figure 22.1: The Tower of Babel Effect: Nonlinear response to height, as taller towers are
disproportionately more vulnerable to, say, earthquakes, winds, or a collision. This illustrates
the case of truncated harm (limited losses).For some structures with unbounded harm the
effect is even stronger.
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First Example: The Kerviel Rogue Trader Affair

The problem is summarized in Antifragile [111] as follows:

On January 21, 2008, the Parisian bank Societé Générale rushed to sell in
the market close to seventy billion dollars worth of stocks, a very large
amount for any single "fire sale." Markets were not very active (called
"thin"), as it was Martin Luther King Day in the United States, and mar-
kets worldwide dropped precipitously, close to 10 percent, costing the
company close to six billion dollars in losses just from their fire sale.
The entire point of the squeeze is that they couldn’t wait, and they had
no option but to turn a sale into a fire sale. For they had, over the week-
end, uncovered a fraud. Jerome Kerviel, a rogue back office employee,
was playing with humongous sums in the market and hiding these ex-
posures from the main computer system. They had no choice but to sell,
immediately, these stocks they didn’t know they owned. Now, to see the
effect of fragility from size (or concentration), consider losses as a func-
tion of quantity sold. A fire sale of $70 billion worth of stocks leads to a
loss of $6 billion. But a fire sale a tenth of the size,$7 billion would result
in no loss at all, as markets would absorb the quantities without panic,
maybe without even noticing. So this tells us that if, instead of having
one very large bank, with Monsieur Kerviel as a rogue trader, we had
ten smaller units, each with a proportional Monsieur Micro- Kerviel,
and each conducted his rogue trading independently and at random
times, the total losses for the ten banks would be close to nothing.

Second Example: The Irish Potato Famine with a warning on GMOs

The same argument and derivations apply to concentration. Consider the tragedy
of the Irish potato famine.

In the 19th Century, Ireland experienced a violent potato famine coming from
concentration and lack of diversity. They concentrated their crops with the "lumper"
potato variety. "Since potatoes can be propagated vegetatively, all of these lumpers
were clones, genetically identical to one another."2

Now the case of genetically modified organism (GMOs) is rich in fragilities (and
confusion about the "natural"): the fact that an error can spread beyond local spots
bringing fat-tailedness, a direct result ofthe multiplication of large scale errors. But
the mathematical framework here allows us to gauge its effect from loss of local
diversity. The greater problem with GMOs is the risk of ecocide, examined in
Chapter x.

Only Iatrogenics of Scale and Concentration

Note that, in this discussion, we only consider the harm, not the benefits of concen-
tration under nonlinear (concave) response. Economies of scale (or savings from
concentration and lack of diversity) are similar to short volatility exposures, with
seen immediate benefits and unseen deferred losses.

2 the source is evolution.berkeley.edu/evolibrary but looking for author’s name.
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Figure 22.2: Integrating the evolutionary explanation of the Irish potato famine into our
fragility framework, courtesy http://evolution.berkeley.edu/evolibrary .

The rest of the discussion is as follows. We will proceed, via convex transforma-
tion to show the effect of nonlinearity on the expectation. We start with open-ended
harm, a monotone concave response, where regardless of probability distribution
(satisfying some criteria), we can extract the harm from the second derivative of
the exposure. Then we look at more natural settings represented by the "sigmoid"
S-curve (or inverted S-curve) which offers more complex nonlinearities and spans
a broader class of phenomena.

Unimodality as a general assumption Let the variable x, representing the stochas-
tic stressor, follow a certain class of continuous probability distributions (unimodal),
with the density p(x) satisfying: p(x) ≥ p(x + ε) for all ε > 0, and x > x∗ and
p(x) ≥ p(x − ε) for all x < x∗ with {x∗ : p(x∗) = maxx p(x)}. The density p(x) is
Lipschitz. This condition will be maintained throughout the entire exercise.

22.2 unbounded convexity effects

In this section, we assume an unbounded harm function, where harm is a monotone
(but nonlinear) function in C2, with negative second derivative for all values of x in
R+; so let h(x), R+ → R− be the harm function. Let B be the size of the total unit
subjected to stochastic stressor x, with θ(B) = B + h(x).
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Stressor

Damage Hor CostL

Figure 22.3: Simple Harm Func-
tions, monotone: k = 1, β = 3/2, 2, 3.

We can prove by the inequalities from concave transformations that, the expecta-
tion of the large units is lower or equal to that of the sum of the parts. Because of
the monotonocity and concavity of h(x),

h

(
N

∑
i=1

ωi x

)
≤

N

∑
i=1

h(ωi x), (22.1)

for all x in its domain (R+), where ωi are nonnegative normalized weights, that
is, ∑N

i=1 ωi = 1 and 0 ≤ ωi ≤ 1.

And taking expectations on both sides, E(θ(B)) ≤ E
(

∑N
i=1 θ(ωi B)

)
: the mean of

a large unit under stochastic stressors degrades compared to a series of small ones.

Application

Let h(x) be the simplified harm function of the form

h(x) ≡ −k xβ, (22.2)

k ∈ (0, ∞) , β ∈ [0, ∞).

Table 25: Applications with unbounded convexity effects

Environment Research h(x)

Liquidation
Costs

Toth et
al.,[115],Bouchaud
et al. [14]

−kx
3
2

Bridges Flyvbjerg et al
[42]

−x( log(x)+7.1
10 )

Example 1: One-Tailed Standard Pareto Distribution Let the probability distribu-
tion of x (the harm) be a simple Pareto (which matters little for the exercise, as any
one-tailed distribution does the job). The density:

pα,L(x) = α Lα x−α−1 for x ≥ L (22.3)

The distribution of the response to the stressor will have the distribution g = (p ◦
h)(x).
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Given that k the stressor is strictly positive, h(x) will be in the negative domain.
Consider a second change of variable, dividing x in N equal fragments, so that the
unit becomes ξ = x/N, N ∈N≥1:

gα,L,N(ξ) = −
ααN−α

(
− ξ

k

)−α/β

β ξ
, (22.4)

for ξ ≤ −k
(

L
N

)β
and with α > 1 + β. The expectation for a section x/N, Mβ(N):

Mβ(N) =
∫ − kLβ

N

−∞
ξ gα,L,N(ξ) dξ = −α k Lβ Nα

(
1
β−1

)
−1

α− β
(22.5)

which leads to a simple ratio of the mean of the total losses (or damage) compared
to a κ number of its N fragments, allowing us to extract the "convexity effect" or
the degradation of the mean coming from size (or concentration):

κ Mβ(κN)
Mβ(N)

= κ
α
(

1
β−1

)
(22.6)

With β = 1, the convexity effect =1. With β = 3/2 (what we observe in orderflow
and many other domains related to planning, Bouchaud et al., 2012, Flyvbjerg et al,
2012), the convexity effect is shown in Figure 26.

2 4 6 8 10
N

0.2

0.4

0.6

0.8

1.0

Expected total loss for N units

Convexity Effects

Table 26: The mean harm in total as a result of concentration. Degradation of the mean for
N=1 compared to a large N, with β = 3/2

Unseen Harm The skewness of gα,L,N(ξ) shows effectively how losses have prop-
erties that hide the mean in "small" samples (that is, large but insufficient number
of observations), since, owing to skewness, the observed mean loss with tend to be
lower than the true value. As with the classical Black Swan exposures, benefits are
obvious and harm hidden.
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22.3 a richer model: the generalized sigmoid

22.3 a richer model: the generalized sigmoid
Now the biological and physical domains (say animals, structures) do not incur
unlimited harm, when taken as single units. The losses terminate somewhere: what
is broken is broken. From the generalized sigmoid function of [? ], where SM(x) =
∑M

k=1
ak

1+exp(bk(ck−x)) , a sum of single sigmoids. We assume as a special simplified case
M = 1 and a1 = −1 so we focus on a single stressor or source of harm S(x), R+ →
[−1, 0] where x is a positive variable to simplify and the response a negative one.
S(0) = 0, so S(.) has the following form:

S(x) =
−1

1 + e b (c−x) +
1

1 + eb c (22.7)

The second term is there to ensure that S(0) = 0. Figure 27 shows the different
calibrations of b (c sets a displacement to the right).

2 4 6 8 10
Harm

-1.0

-0.8

-0.6

-0.4

-0.2

Response

Table 27: Consider the object broken at −1 and in perfect condition at 0

[backgroundcolor=lightgray] The sigmoid, S(x) in C∞ is a class of generalized func-
tion (Sobolev, Schwartz [101]); it represents literally any object that has progressive
positive or negative saturation; it is smooth and has derivatives of all order: simply
anything bounded on the left and on the right has to necessarily have to have the
sigmoid convex-concave (or mixed series of convex-concave) shape.

The idea is to measure the effect of the distribution, as in 3.14. Recall that the
probability distribution p(x) is Lipshitz and unimodal.

Convex Response

Higher scale 

(dispersion or 

variance)

Harm

Response

The second derivative S′′(x) =
b2eb(c+x)(ebx−ebc)

(ebc+ebx)
3 . Setting the point where S′′(x) be-

comes 0, at x = c, we get the following: S(x) is concave in the interval x ∈ [0, c) and
convex in the interval x ∈ (c, ∞).
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small is beautiful: risk, scale and concentration

The result is mixed and depends necessarily on the parametrization of the
sigmoids. We can thus break the probability distributions into two sections, the
"concave" and "convex" parts: E = E− + E+. Taking ξ = x/N, as we did earlier,

E− = N
∫ c

0
S(ξ) p(ξ) dξ ,

and
E+ = N

∫ ∞

c
S(ξ) p(ξ) dξ

The convexity of S(.) is symmetric around c,

S′′(x)|x=c−u= −2b2 sinh4
(

b u
2

)
csch3(b u)

S′′(x)|x=c+u= 2b2 sinh4
(

bu
2

)
csch3(b u)

We can therefore prove that the effect of the expectation for changes in N depends
exactly on whether the mass to the left of a is greater than the mass to the right.
Accordingly, if

∫ a
0 p(ξ) dξ >

∫ ∞
a p(ξ) dξ, the effect of the concentration ratio will be

positive, and negative otherwise.

Application

Example of a simple distribution: Exponential Using the same notations as 22.2,
we look for the mean of the total (but without extracting the probability distribution
of the transformed variable, as it is harder with a sigmoid). Assume x follows a
standard exponential distribution with parameter λ, p(x) ≡ λeλ(−x)

Mλ(N) = E (S(ξ)) =
∫ ∞

0
λeλ(−x)

(
− 1

eb(c− x
N ) + 1

+
1

ebc + 1

)
dx (22.8)

Mλ(N) =
1

ebc + 1
− 2F1

(
1,

Nλ

b
;

Nλ

b
+ 1;−ebc

)
where the Hypergeometric function 2F1(a, b; c; z) = ∑∞

k=0
akbkzk

k!ck
.

The ratio κ Mλ(κN)
Mλ(N) doesn’t admit a reversal owing to the shape, as we can see

in 22.4 but we can see that high variance reduces the effect of the concentration.
However high variance increases the probability of breakage.

Example of a more complicated distribution: Pareto type IV Quasiconcave but
neither convex nor concave PDF: The second derivative of the PDF for the Expo-
nential doesn’t change sign, ∂2

∂x2 (λ exp(−λx)) = λ3eλ(−x), so the distribution retains a
convex shape. Further, it is not possible to move its mean beyond the point c where
the sigmoid switches in the sign of the nonlinearity. So we elect a broader one,
the Pareto Distibution of Type IV, which is extremely flexible because, unlike the
simply convex shape (it has a skewed "bell" shape, mixed convex-concave-convex
shape) and accommodates tail exponents, hence has power law properties for large
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22.3 a richer model: the generalized sigmoid

Λ ® 0

Different values of Λ Î (0,1]

2 4 6 8 10
Κ

0.2

0.4

0.6

0.8

1.0

ΚMΛ HΚL

MΛ H1L

Figure 22.4: Exponential Distribution: The degradation coming from size at different values
of λ.

deviations. It is quasiconcave but neither convex nor concave. A probability mea-
sure (hence PDF) p : D→ [0, 1] is quasiconcave in domain D if for all x, y ∈ D and
ω ∈ [0, 1] we have:

p(ωx + (1−ω)y) ≥ min (p(x), p(y)).

Where x is the same harm as in Equation 22.7:

pα,γ,µ,k(x) =
αk−1/γ(x− µ)

1
γ−1

((
k

x−µ

)−1/γ
+ 1
)−α−1

γ
(22.9)

for x ≥ µ and 0 elsewhere.

The Four figures in 3.14 shows the different effects of the parameters on the
distribution.
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small is beautiful: risk, scale and concentration

S''(x)=0

1 2 3 4 5 6

Μ

-0.5

-0.4

-0.3

-0.2

-0.1

Harm for N=1

Figure 22.5: Harm increases as the
mean of the probability distribution
shifts to the right, to become maxi-
mal at c, the point where the sigmoid
function S(.) switches from concave
to convex.
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The mean harm function, Mα,γ,µ,k(N) becomes:

Mα,γ,µ,k(N) =
αk−1/γ

γ ∫ ∞

0
(x− µ)

1
γ−1

(
1

ebc + 1
− 1

eb(c− x
N ) + 1

)
((

k
x− µ

)−1/γ

+ 1

)−α−1

dx (22.10)

M(.) needs to be evaluated numerically. Our concern is the "pathology" where
the mixed convexities of the sigmoid and the probability distributions produce

locally opposite results than 3.14 on the ratio
κMα,γ,µ,k(N)
Mα,γ,µ,k(N) . We produce perturbations

around zones where µ has maximal effects, as in 22.7. However as shown in Figure
22.5, the total expected harm is quite large under these conditions, and damage
will be done regardless of the effect of scale.
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22.3 a richer model: the generalized sigmoid

2 4 6 8 10
Κ

0.5

1.0

1.5

ΚMk,Α,Γ,Μ HΚL

Mk,Α,Γ,Μ H1L

Figure 22.6: Different values of µ:
we see the pathology where 2 M(2) is
higher than M(1), for a value of µ = 4
to the right of the point c.
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Figure 22.7: The effect of µ on the
loss from scale.
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small is beautiful: risk, scale and concentration

Conclusion

This completes the math showing extracting the "small is beautiful" effect, as well
as the effect of dose on harm in natural and biological settings where the Sigmoid
is in use. More verbal discussions are in Antifragile.
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23 W H Y I S T H E F R A G I L E
N O N L I N E A R ?

Chapter Summary 21: Explains why the fragilefragile is necessarily in the non-
linear.

INCOMPLETE CHAPTER as of November 2014

The main framework of broken glass: very nonlinear in response. We replace the
Heavyside with a continuous funtion in C∞.

Imagine different classes of coffee cups or fragilefragile items that break as the
dose increases, indexed by

{
βi} for their sigmoid of degree 1: the linearity in the

left interval ( x0, x1] , where xis the dose and S(.) the response, S : R+ → [0, 1]. (
Note that α = 1; we keep a (which determines the height) constant so all start at
the same point x0 and end at the same one x4. Note that c corresponds to the
displacement to the right or the left on the dose-response line.

Sa,βi ,γ(x) ≡ a
eβi(−(γ+x)) + 1

The second derivative:

∂2Sa,βi ,γ(x)

∂x2 = −2aβ2 sinh4
(

1
2

β(γ + x)
)

csch3(β(γ + x)), (23.1)

where sinh and csnh are the hyperbolic sine and cosine, respectively.

Next we subject all the families to a probability distribution of harm, f (z) being a
monomodal distribution with the expectation E(z) ∈ ( x0, x1] . We compose f ◦ Sto
get f

(
Sα,βi ,γ(x)

)
. In this case we pick a symmetric power law.

fα,σ
(
Sa,β,γ(x)

)
=,

with α ε (1, ∞) and σ ∈ (0, ∞)

The objects will produce a probability distribution around [0, 1] since Sa,βi ,γ(x)
is bounded at these levels; we can see to the right a Dirac mass concentrating
observations at 1. Clearly what has survived is the nonlinear.
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why is the fragile nonlinear?
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Figure 23.1: The different dose-response curves, at different values of
{

βi
}

, corresponding
to varying levels of concavity.
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24 H O W T H E W O R L D W I L L
P R O G R E S S I V E LY LO O K
W E I R D E R

Chapter Summary 22: Information is convex to noise. The paradox is that
increase in sample size magnifies the role of noise (or luck); it makes tail
values even more extreme. There are some problems associated with big
data and the increase of variables available for epidemiological and other
"empirical" research.

24.1 how noise explodes faster than data

To the observer, every day will seem weirder than the previous one. It has always
been absolutely silly to be exposed the news. Things are worse today thanks to the
web.

Source Effect

News Weirder and weirder events reported on the front
pages

Epidemiological Stud-
ies, "Big Data"

More spurious "statistical" relationships that even-
tually fail to replicate, with more accentuated ef-
fects and more statistical "significance" (sic)

Track Records Greater performance for (temporary) "star"
traders

We are getting more information, but with constant “consciouness”, “desk
space”, or “visibility”. Google News, Bloomberg News, etc. have space for, say,
<100 items at any point in time. But there are millions of events every day. As the
world is more connected, with the global dominating over the local, the number of
sources of news is multiplying. But your consciousness remains limited. So we are
experiencing a winner-take-all effect in information: like a large movie theatre with
a small door.

Likewise we are getting more data. The size of the door is remaining constant,
the theater is getting larger.

The winner-take-all effects in information space corresponds to more noise, less
signal. In other words the spurious dominates.
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how the world will progressively look weirder

Figure 24.1: The picture of a "freak
event" spreading on the web of a boa
who ate a drunk person in Kerala, In-
dia, in November 2013. With 7 bil-
lion people on the planet and ease
of communication the "tail" of daily
freak events is dominated by such
news. The make the point even more:
it turned out to be false (thanks to
Victor Soto).

Similarity with the Fooled by Randomness Bottleneck

This is similar to the idea that the more spurious returns dominate finance as the
number of players get large, and swamp the more solid ones. Start with the idea
(see Taleb 2001), that as a population of operators in a profession marked by a
high degrees of randomness increases, the number of stellar results, and stellar for
completely random reasons, gets larger. The “spurious tail” is therefore the number
of persons who rise to the top for no reasons other than mere luck, with subsequent
rationalizations, analyses, explanations, and attributions. The performance in the
“spurious tail” is only a matter of number of participants, the base population of
those who tried. Assuming a symmetric market, if one has for base population 1

million persons with zero skills and ability to predict starting Year 1, there should
be 500K spurious winners Year 2, 250K Year 3, 125K Year 4, etc. One can easily see
that the size of the winning population in, say, Year 10 depends on the size of the
base population Year 1; doubling the initial population would double the straight
winners. Injecting skills in the form of better-than-random abilities to predict does
not change the story by much. (Note that this idea has been severely plagiarized
by someone, about which a bit more soon).

Because of scalability, the top, say 300, managers get the bulk of the allocations,
with the lion’s share going to the top 30. So it is obvious that the winner-take-
all effect causes distortions: say there are m initial participants and the “top” k
managers selected, the result will be k

m managers in play. As the base population
gets larger, that is, N increases linearly, we push into the tail probabilities.

Here read skills for information, noise for spurious performance, and translate
the problem into information and news.

The paradox:The paradox:The paradox: This is quite paradoxical as we are accustomed to the opposite
effect, namely that a large increases in sample size reduces the effect of sampling
error; here the narrowness of M puts sampling error on steroids.
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24.2 derivations

24.2 derivations

Let Z ≡
(

zj
i

)
1<j<m,1≤i<nbe a (n×m) sized population of variations, m population

series and n data points per distribution, with i, j ∈ N; assume “noise” or scale of
the distribution σ ∈ R+ , signal µ ≥0 . Clearly σ can accommodate distributions
with infinite variance, but we need the expectation to be finite. Assume i.i.d. for a
start.

Cross Sectional (n = 1) Special case n = 1: we are just considering news/data
without historical attributes.

Let F← be the generalized inverse distribution, or the quantile,

F←(w) = inf{t ∈ R : F(t) ≥ w},

for all nondecreasing distribution functions F(x) ≡ P(X < x). For distributions
without compact support, w ∈ (0,1); otherwise w ∈ [0, 1]. In the case of continuous
and increasing distributions, we can write F−1 instead.

The signal is in the expectaion, so E(z) is the signal, and σ the scale of the dis-
tribution determines the noise (which for a Gaussian corresponds to the standard
deviation). Assume for now that all noises are drawn from the same distribution.

Assume constant probability the “threshold”, ζ= k
m , where k is the size of the

window of the arrival. Since we assume that k is constant, it matters greatly that
the quantile covered shrinks with m.

Gaussian Noise

When we set ζ as the reachable noise. The quantile becomes:

F−1(w) =
√

2 σ erfc−1(2w) + µ,

where erfc−1is the inverse complementary error function.
Of more concern is the survival function, Φ ≡ F(x) ≡ P(X > x), and its inverse

Φ−1

Φ−1
σ,µ(ζ) = −

√
2σerfc−1

(
2

k
m

)
+ µ

Note that σ (noise) is multiplicative, when µ (signal) is additive.
As information increases, ζ becomes smaller, and Φ−1 moves away in standard

deviations. But nothing yet by comparison with Fat tails.

Fat Tailed Noise

Now we take a Student T Distribution as a substitute to the Gaussian.
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how the world will progressively look weirder
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Figure 24.2:
Gaussian,
σ={1,2,3,4}

(24.1)f (x) ≡

(
α

α+ (x−µ)2

σ2

) α+1
2

√
α σ B

(
α
2 , 1

2

)
Where we can get the inverse survival function.

(24.2)γ−1
σ,µ(ζ) = µ +

√
α σ sgn (1− 2 ζ)

√√√√ 1

I−1
(1,(2ζ−1)sgn(1−2ζ))

(
α
2 , 1

2

) − 1

where I is the generalized regularized incomplete Beta function I(z0 ,z1)
(a, b) =

B(z0,z1)
(a,b)

B(a,b) , and Bz(a, b) the incomplete Beta function Bz(a, b) =
∫ z

0 ta−1(1− t)b−1dt.

B(a, b) is the Euler Beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b) =
∫ 1

0 ta−1(1− t)b−1dt.

As we can see in Figure 2, the explosion in the tails of noise, and noise only.

Fatter Tails: Alpha Stable Distribution

Part 2 of the discussion to come soon.
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25 T H E C O N V E X I T Y O F W E A LT H TO
I N E Q U A L I T Y

Chapter Summary 23: The one percent of the one percent has tail properties such
that the tail wealth (expectation

∫ ∞
K x p(x) dx) depends far more on inequality

than wealth.

25.1 the one percent of the one percent are di-
vorced from the rest

The one percent of the one percent of the population is vastly more sensitive to
inequality than total GDP growth (which explains why the superrich are doing
well now, and should do better under globalization, and why it is a segment that
doesn’t correlate well with the economy). For the super-rich, one point of GINI
causes an increase equivalent to 6-10% increase in total income (say, GDP). More
generally, the partial expectation in the tail is vastly more sensitive to changes in
scale of the distribution than in its centering.

Sellers of luxury goods and products for the superwealthy profit from dispersion
more than increase in total wealth or income. I looked at their case as a long
optionality, benefit-from-volatility type of industry.

From textitAntifragile[111]:

Another business that does not care about the average but rather the dispersion around
the average is the luxury goods industry—jewelry, watches, art, expensive apartments
in fancy locations, expensive collec - tor wines, gourmet farm - raised probiotic dog food,
etc. Such businesses only cares about the pool of funds available to the very rich. If the
population in the Western world had an average income of fifty thousand dollars, with
no inequality at all, the luxury goods sellers would not survive. But if the average stays
the same, with a high degree of inequality, with some incomes higher than two million
dollars, and potentially some incomes higher than ten million, then the business has
plenty of customers—even if such high incomes were offset with masses of people with
lower incomes. The “tails” of the distribution on the higher end of the income brackets,
the extreme, are much more determined by changes in inequality than changes in the
average. It gains from dispersion, hence is antifragile.

This explains the bubble in real estate prices in Central London, determined by in-
equality in Russia and the Arabian Gulf and totally independent of the real estate dy-
namics in Britain. Some apartments, those for the very rich, sell for twenty times the
average per square foot of a building a few blocks away.

Harvard’ s former president Larry Summers got in trouble explaining a version of
the point and lost his job in the aftermath of the uproar. He was trying to say that
males and females have equal intelligence, but the male population has more variations
and dispersion (hence volatility), with more highly unintelligent men, and more highly
intelligent ones. For Summers, this explained why men were overrepresented in the sci
- entific and intellectual community (and also why men were overrepre - sented in jails
or failures). The number of successful scientists depends on the “tails,” the extremes,
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the convexity of wealth to inequality

rather than the average. Just as an option does not care about the adverse outcomes, or
an author does not care about the haters.

Derivations

Let the r.v. x ∈ [xmin, ∞) follow a Pareto distribution (type II), with expected return
fixed at E(x) = m, tail exponent α >1, the density function

p(x) =
α
(

(α−1)(m−xmin)−xmin+x
(α−1)(m−xmin)

)
−α−1

(α− 1) (m− xmin)

We are dealing with a three parameter function, as the fatness of the tails is
determined by both α and m− xmin, with m− xmin> 0 (since α >1).

Note that with 7 billion humans, the one percent of the one percent represents
700,000 persons.

The same distribution applies to wealth and income (although with a different
parametrization, including a lower α as wealth is more unevenly distributed than
income.)

Note that this analysis does not take into account the dynamics (and doesn’t need
to): over time a different population will be at the top.

The Lorenz curve Where F(x), short for P(X < x) is the cumulative distribu-
tion function and inverse F←(z) : [0,1] →[xmin, ∞), the Lorenz function for z
L(z):[0, 1]→[0,1] is defined as:

L(z) ≡
∫ z

0 F←(y)dy∫ 1
0 F←(y)dy

The distribution function

F(x) = 1−
(

1 +
x− xmin

(α− 1) (m− xmin)

)
−α,

so its inverse becomes:

F←(y) = m(1− α) + (1− y)−1/α(α− 1) (m− xmin) + αxmin

Hence

L (z, α, m, xmin) =
1
m

(1− z)−1/α ((z− 1)α (m− xmin)

+ (z− 1)
1
α (m(z + α− zα) + (z− 1)αxmin) (25.1)

Which gives us different combination of α and m − xmin, producing different
tail shapes: some can have a strong “middle class” (or equivalent) while being
top-heavy; others can have more equal inequality throughout.
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25.1 the one percent of the one percent are divorced from the rest
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Figure 25.1: Different combinations
L(z, 3, .2, .1), L(z, 3, .95, .1), L(z, 1.31, .2, .1)
in addition to the perfect equality
line L( z)= z. We see the criss-
crossing at higher values of z.

Gini and Tail Expectation

The GINI Coefficient, ∈[0,1] is the difference between 1) the perfect equality,with a
Lorenz L( f ) = f and 2) the observed L (z, α, m, xmin)

GINI (α, m, xmin) =
α

(2α− 1)
(m− xmin)

m

Computing the tail mass above a threshold K, that is, the unconditional partial
expectation E>K≡

∫ ∞
K xp(x) dx, which corresponds to the nominal share of the total

pie for those with wealth above K,

E>K = (α− 1)α−1 (α (K + m− xmin)−m)

(
m− xmin

K + (α− 1)m− αxmin

)α

The Probability of exceeding K, P>K (Short for P(X > k))

P>K =
(

1 +
K− xmin

(α− 1) (m− xmin)

)
−α

For the One Percent of the One Percent (or equivalent), we set the probability P>K
and invert to KP=(α− 1) (m− xmin) p−1/α − α (1 + m + xmin),

E>K =
(

p
α−1

α

) (
α (m− xmin) + p

1
α (m−mα + αxmin)

)
Now we can check the variations in GINI coefficient and the corresponding

changes in E>Kfor a constant m.
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the convexity of wealth to inequality

α GINI E>K E>K/m

1.26 0.532895 0.33909 0.121103

1.23 0.541585 0.395617 0.141292

1.2 0.55102 0.465422 0.166222

1.17 0.561301 0.55248 0.197314

1.14 0.572545 0.662214 0.236505

1.11 0.584895 0.802126 0.286474

1.08 0.598522 0.982738 0.350978
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26 N O N L I N E A R I T I E S A N D R I S K I N
M E D I C I N E

Chapter Summary 24: Examines nonlinearities in medicine /iatrogenics as a risk
management problem.

26.1 antifragility from uneven distribution

Take health effect a function “response” from a single parameter, f: R ->R be a
twice differentiable, the effect from dose x.

If over a range x ∈ [a,b], over a set time period ∆t, ∂2 f (x)
∂x2 > 0 or more heuristically,

1
2 (f(x+∆x) + f(x-∆x))> f(x), with x+∆x and x-∆x ∈ [a,b] then there are benefits
from unevenness of distribution: episodic deprivation, intermittent fasting, variable
pulmonary ventilation, uneven distribution of proteins(autophagy), vitamins, high
intensity training, etc.).

In other words, in place of a dose x, one can give 140% of x , then 60% of x, with
a more favorable outcome.
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Dose

Response f

fHxL

f Hx+DxL+ f Hx-DxL

2

H

ProofProofProof: Jensen’s Inequality.
This is a simplification here since dose response is rarely monotone in its nonlin-

earity, as we will see further down.

Mixed Nonlinearities in Nature Nonlinearities are not monotone.
Nonlinearities in BiologyNonlinearities in BiologyNonlinearities in Biology- The shape convex-concave necessarily flows from any-

thing increasing (monotone, i.e. never decreasing) and bounded, with a maximum
and a minimum values, i.e. never reached infinity from either side. At low lev-
els, the dose response is convex (gradually more and more effective). Additional
doses tend to become gradually ineffective or hurt. The same can apply to anything
consumed in too much regularity. This type of graph necessarily applies to any sit-
uation bounded on both sides, with a known minimum and maximum (saturation),
which includes happiness.
For instance, If one considers that there exists a maximum level of happiness and
unhappiness then the general shape of this curve with convexity on the left and
concavity on the right has to hold for happiness (replace “dose” with wealth and
“response” with happiness). Kahneman-Tversky Prospect theory models a similar
one for “utility” of changes in wealth, which they discovered empirically.

Iatrogenics If ∂2 f (x)
∂x2 ≤ 0 for all x (to simplify), and x is symmetrically distributed,

then the distribution of the “outcome” from administration of f (and only the effect
of f ) will be left-skewed as shown in Figure 1. Further “known limited upside,
unknown downside” to map the effect of the next figure.

Outcomes

Probability

Hidden Iatrogenics Benefits

Medical IatrogenicsMedical IatrogenicsMedical Iatrogenics: Probability distribution of f. Case of small benefits and
large Black Swan-style losses seen in probability space. Iatrogenics occur when we
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26.1 antifragility from uneven distribution

have small identifiable gains (say, avoidance of small discomfort or a minor infec-
tion) and exposure to Black Swans with delayed invisible large side effects (say,
death). These concave benefits from medicine are just like selling a financial option
(plenty of risk) against small tiny immediate gains while claiming “evidence of no
harm”.
In short, for a healthy person, there is a small probability of disastrous outcomes
(discounted because unseen and not taken into account), and a high probability of
mild benefits.

ProofProofProof: Convex transformation of a random variable, the Fragility Transfer Theo-
rem.

Medical Breakeven

Iatrogenics zone

Condition

Drug Benefit

In time series space:

Mother Nature v/s Medicine The hypertension example. On the vertical axis, we have
benefits of a treatment, on the horizontal, the severity of the condition. The arrow points
at the level where probabilistic gains match probabilistic harm. Iatrogenics disappear non-
linearly as a function of the severity of the condition. This implies that when the patient is
very ill, the distribution shifts to antifragile (thicker right tail), with large benefits from the
treatment over possible iatrogenics, little to lose.
Note that if you increase the treatment you hit concavity from maximum benefits, a zone
not covered in the graph —seen more broadly, it would look like the graph of bounded upside

From Antifragile
Second principle of iatrogenics: it is not linear. We should not take risks with

near-healthy people; but we should take a lot, a lot more risks with those deemed
in danger.

Why do we need to focus treatment on more serious cases, not marginal ones?
Take this example showing nonlinearity (convexity). When hypertension is mild,
say marginally higher than the zone accepted as “normotensive,” the chance of
benefiting from a certain drug is close to 5.6 percent (only one person in eighteen
benefit from the treatment). But when blood pressure is considered to be in the
“high” or “severe” range, the chances of benefiting are now 26 and 72 percent,
respectively (that is, one person in four and two persons out of three will benefit
from the treatment). So the treatment benefits are convex to condition (the bene- fits
rise disproportionally, in an accelerated manner). But consider that the iatrogenics
should be constant for all categories! In the very ill condi- tion, the benefits are
large relative to iatrogenics; in the borderline one, they are small. This means that
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nonlinearities and risk in medicine

we need to focus on high-symptom con- ditions and ignore, I mean really ignore,
other situations in which the patient is not very ill.

The argument here is based on the structure of conditional survival probabilities,
similar to the one that we used to prove that harm needs to be nonlinear for porce-
lain cups. Consider that Mother Nature had to have tinkered through selection in
inverse proportion to the rarity of the condition. Of the hundred and twenty thou-
sand drugs available today, I can hardly find a via positiva one that makes a healthy
person uncondi- tionally “better” (and if someone shows me one, I will be skeptical
of yet-unseen side effects). Once in a while we come up with drugs that enhance
performance, such as, say, steroids, only to discover what peo- ple in finance have
known for a while: in a “mature” market there is no free lunch anymore, and what
appears as a free lunch has a hidden risk. When you think you have found a free
lunch, say, steroids or trans fat, something that helps the healthy without visible
downside, it is most likely that there is a concealed trap somewhere. Actually, my
days in trading, it was called a “sucker’s trade.”

And there is a simple statistical reason that explains why we have not been able
to find drugs that make us feel unconditionally better when we are well (or uncon-
ditionally stronger, etc.): nature would have been likely to find this magic pill by
itself. But consider that illness is rare, and the more ill the person the less likely
nature would have found the solu- tion by itself, in an accelerating way. A condi-
tion that is, say, three units of deviation away from the norm is more than three
hundred times rarer than normal; an illness that is five units of deviation from the
norm is more than a million times rarer!

The medical community has not modeled such nonlinearity of benefits to iatro-
genics, and if they do so in words, I have not seen it in formal- ized in papers,
hence into a decision-making methodology that takes probability into account (as
we will see in the next section, there is little explicit use of convexity biases). Even
risks seem to be linearly extrapo- lated, causing both underestimation and overes-
timation, most certainly miscalculation of degrees of harm—for instance, a paper
on the effect of radiation states the following: “The standard model currently in
use ap- plies a linear scale, extrapolating cancer risk from high doses to low doses
of ionizing radiation.” Further, pharmaceutical companies are under financial pres-
sures to find diseases and satisfy the security ana- lysts. They have been scraping
the bottom of the barrel, looking for disease among healthier and healthier peo-
ple, lobbying for reclassifica- tions of conditions, and fine-tuning sales tricks to get
doctors to overpre- scribe. Now, if your blood pressure is in the upper part of the
range that used to be called “normal,” you are no longer “normotensive” but “pre-
hypertensive,” even if there are no symptoms in view. There is nothing wrong with
the classification if it leads to healthier lifestyle and robust via negativa measures—
but what is behind such classification, often, is a drive for more medication.
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27 A M E R I C A N O P T I O N S A N D
H I D D E N C O N V E X I T Y

Chapter Summary 25: American Options have hidden optionalities. Using a
European option as a baseline we heuristically add the difference. We also show
how these hidden options are extremely significant compared to the focus of
the research literature on insignificant marginal improvements of the pricing
equations but in the Black Scholes World.

27.1 this note

This is a paper in progress, not formatted for submission, but aiming at the de-
velopment of ideas and mathematical results around the problem. We start with
the math, and end with the explanations, much of which were aimed at updating
Dynamic Hedging; the sequence will be somewhat reversed in the final paper, and
some comments will be added.

27.2 the general mathematical results: pricing se-
ries of hidden options "use one lose all"

Define a probability triple (Ω,F ,P), with corresponding random variables indexed-
ordered by size of maximal possible realizations so, with X(ω) : Ω → Rn a mea-
surable function, with i ∈ N+, i ≤ p, we have a random vector X ≡ (Xi)1≤i≤p
with independent components but not the same probability distribution, as the
realizations follow different Bernoulli distributions with varying probabilities and
realizations Xi(ω):

Xi =

{
λ1 w.p. pi

0 w.p. 1− pi
(27.1)

And of course we index the random variables by rank according to their maxi-
mum possible value λ1, a rank that is retained for all realizations since the λi are
constant, and in such a way that λp is the smallest :

λ1 ≥ λ2 ≥ . . . ≥ λn

These events are, casually, defined as a payoff (taking a single value) with its
probability.

Optionality Only one payoff can be "accepted", which makes the maximal one the
one of concern as we abandon the other, inferior ones. Define A as the new set of
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Figure 27.1: the vector of weights Θ under probabilities flat p1 = · · · = p6 = 102 and 103 and
m = 90 days. We can observe probabilities remain significant and cumulatively consequential.
We also see how θi become equal, with a flat weights at small probabilities.

"events" ξi of concern and ξc
i the complentary event, that is that ξi does not take

place, as follows:

ξi : at least one λi realization in m, m ∈N+, is > 0

= sup ((Xi,m)i≤m) > 0

A =
{

ξp
}
∪
{

ξc
p ∩ ξn−1

}
∪
{{

ξc
p ∪ ξc

n−1

}
∩ ξn−2

}
∪
{{

ξc
p ∪ ξc

n−1 ∪ ξc
n−2

}
∩ ξn−3

}
. . . (27.2)

A =
p⋃

i=0

{
∪i

j=0ξc
n−j ∩ ξn−i

}
(27.3)

Now consider the weight vector Θ:

Θ ≡
(
(1− (1− pn)m)

(
n−1

∏
i=1

(1− pn−i)m

))
n≤p

Θ ≡ (θ1, θ2, . . . , θp)

Λ ≡ (λ1, λ2, . . . , λp)

We skip to the expectation without dealing with probability distribution:

E[X|A] = Θ.ΛT (27.4)

Given that the events are disjoint,the expected value of the option on n draws
over a sequence of observations of length m (which could correspond to m time
periods):
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27.3 misplaced precision

Ξm = E[X|A]

= ∑p
n=1λn (1− (1− pn)m)

(
n−1

∏
i=1

(1− pn−i)m

)
(27.5)

Which gives the value of the hidden optionality.
What we have done here is find an exact representation of the expectation for the

upper bound of a nonhomogeneous mixture of independent Bernouilli variables(or,
rather, functions of Bernouilli variables). The result is generally applicable to many
small things in life, so let us apply it to American options.

We can get further simplifications thanks to the effect that the options become
additive as the probabilities get smaller, without necessarily becoming equal, so:

E[X|A] ≈∑p
n=1λn (1− (1− pn)m) (27.6)

Note on the difference between the heuristic Bernouilli and a set of full distributions

It will take a few lines to show whether the tractability of the Bernouilli simplifica-
tion causes losses in precision. We could use, say, the maximum of gamma/exponential
family with different calibrations but Monte Carlo shows no difference.

27.3 misplaced precision
So many "rigorous" research papers in derivatives have been involved in the "exact"
pricing of American options, though within model when in fact their most interest-
ing attribute is that they benefit from the breakdown of models, or they are convex
to model errors.

Indeed an interesting test to see if someone has traded derivatives is to quiz him
on American options. If he answers by providing a "pasting boundary" story but
using a Black-Scholes type world, then you can safely make the conclusion that he
has never gotten close to American options.

Furthermore, with faster computers, a faster pricing algorithm does not carry
large advantages. The problem is in the hidden optionality... Major points:

An American option is always worth equally or more than the European option
of the same nominal maturity.

An American option has always a shorter or equal expected life than a European
option.

Rule 27.1.
The value of the difference between an American and European option of same strike and
maturity increases with the following factors:

• Higher volatility of interest rates.

• Higher volatility of volatility.

• Higher instability of the slope of the volatility curve.
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The major difference between an American and European option is that the
holder of the American option has the right to decide on whether the option is
worth more dead or alive. In other words is it worth more held to expiration or
immediately exercised?

27.4 the pricing equation

We can therefore show that, as of period t0, for all periods to expiration t, where OA
is the "conventionally priced" American option (according to whichever method one
choses), and OE is the corresponding European option of the same maturity and
strike,

O∗A = OE + E ((OA −OE)∨ Ξm) (27.7)

the expectation of the maximum of two expectations, which allows the simplifica-
tion:

O∗A = OE + ((OA −OE)∨ Ξm) (27.8)

We now need to define the components entering Ξm, namely the various probabili-
ties pi and associated payoff λi.

NOTE: This part will need some derivations, a bit more clarity about the deriva-
tions, etc. Also note that there is a need to prove iterated expectations...

27.5 war stories

War Story 1 : The Currency Interest rate Flip

I recall in the 1980s the German currency carried lower interest rates than the US.
When rate 1 is lower than rate 2, then, on regular pricing systems, for vanilla cur-
rency options, the American Put is higher than the European Put, but American
Call =European Call. At some point the rates started converging; they eventually
flipped as the German rates rose a bit after the reunification of Deutschland. I recall
the trade in which someone who understood model error trying to buy American
Calls Selling European Calls and paying some trader who got an immediate marks-
to-market P/L (from the mark-to-model). The systems gave an identical value to
these -it looked like free money, until the trader blew up. Nobody could initially
figure out why they were losing money after the flip –the systems were missing
on the difference. There was no big liquidity but several billions went through.
Eventually the payoff turned out to be big.

We repeated the game a few times around devaluations as interest rates would
shoot up and there was always some sucker willing to do the trade.
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27.5 war stories

War Story 2: The Stock Squeeze

Spitz called me once in during the 2000 Bachelier conference to tell me that we
were in trouble. We were long listed American calls on some Argentinian stock and
short the delta in stock. The stock was some strange ADR that got delisted and we
had to cover our short ASAP. Somehow we could not find the stock, and begging
Bear Stearns failed to help. The solution turned out to be trivial: exercise the calls,
enough of them to get the stock. We were lucky that our calls were American, not
European, otherwise we would have been squeezed to tears. Moral: an American
call has hidden optionality on model error.

These hidden optionalities on model errors are more numerous than the ones in
the two examples I just gave. I kept discovering new ones.

War Story 3: American Option and The Squeeze

I recall in the late 1990s seeing a strange situation: Long dated over-the-counter
call options on a European Equity index were priced exceedingly below whatever
measure of historical volatility one can think of. What happened was that traders
were long the calls, short the future, and the market had been rallying slowly. They
were losing on their future sales and had to pay for it -without collecting on their
corresponding profits on the option side. The calls kept getting discounted; they
were too long- dated and nobody wanted to toutch them. What does this mean?
Consider that a long term European option can trade below intrinsic value! I mean
intrinsic value by the forward! You may not have the funds to arb it... The market
can become suddenly inefficient and bankrupt you on the marks as your options
can be severely discounted. I recall seing the cash-future discount reach 10% during
the crash of 1987. But with an American option you have a lower bound on how
much you can be squeezed. Let us look for cases of differential valuation.

Case 1 (Simplest, the bang comes from the convexity to changes in the carry of
the premium) Why do changes in interest rate carry always comparatively benefit
the American option ? Take a 1 year European and American options on a forward
trading at 100, i.e. with a spot at 100. The American option will be priced on the
risk management system at exactly the same value as the European one. S=100,
F=100, where S is the spot and F is the forward. Assume that the market rallies and
the spot goes to 140. Both options will go to parity, and be worth $40.

Case 1 A Assume that interest rates are no longer 0, that both rates go to 10%.
F stays equal to S. Suddenly the European option will go from $40 to the present
value of $40 in one year using 10%, i.e. $36.36. The American option will stay at
$40, like a rock.

Case 1 B Assume the domestic rate goes up to 10%, spot unchanged. F will be
worth approximately of S. It will go from 140 to 126, but the P/L should be neutral
if the option still has no gamma around 126 (i.e. the options trade at intrinsic value).
The European option will still drop to the PV of 26, i.e. 23.636, while the American
will be at 26.
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We can thus see that the changes in carry always work to the advantage of the
American option (assuming the trader is properly delta neutral in the forward). We
saw in these two cases the outperformance of the American option. We know the
rule that :

If in all scenarios option A is worth at least the same as option B and, in some
scenarios can be worth more than option B, then it is not the greatest idea to sell
option A and buy option B at the exact same price.

This tells us something but not too much: we know we need to pay more, but
how much more?

Case 2 Sensitivity (more serious) to changes in the Dividend/Foreign rate

Another early exercise test needs to be in place, now. Say that we start with S = 140

and F = 140 and that we have both rates equal to 0. Let us compare a European
and an American option on cash. As before, they will initially bear the same price
on the risk management system.

Assume that that the foreign rate goes to 20%. F goes to approximately S, roughly
1.16. The European call option will be worth roughly $16 (assuming no time value),
while the American option will be worth $40. Why ? because the American option
being a very smart option, chooses whatever fits it better, between the cash and the
future, and positions itself there.

Case 3: More Complex: Sensitivity to the Slope of the Yield Curve

Now let us assume that the yield curve has kinks it it, that it is not quite as linear
as one would think. We often such niceties around year end events, when interest
rates flip, etc.

As Figure TK shows the final forward might not be the most relevant item. Any
bubbling on the intermediate date would affect the value of the American option.
Remember that only using the final F is a recipe for being picked-on by a shrewd
operator. A risk management and pricing system that uses no full term structure
would be considered greatly defective, as it would price both options at the exact
same price when clearly the American put is worth more because one can lock-
in the forward to the exact point in the middle – where the synthetic underlying
is worth the most. Thus using the final interest rate differential would be totally
wrong.

To conclude from these examples, the American option is extremely sensitive
to the interest rates and their volatility. The higher that volatility the higher the
difference between the American and the European. Pricing Problems

It is not possible to price American options using a conventional Monte Carlo
simulator. We can, however, try to price them using a more advanced version -or
a combination between Monte Carlo and an analytical method. But the knowledge
thus gained would be simply comparative.

Further results will follow. It would be great knowledge to quantify their differ-
ence, but we have nothing in the present time other than an ordinal relationship.
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27.6 the stopping time problem

27.6 the stopping time problem
Another non-trivial problem with American options lies in the fact that the forward
hedge is unknown. It resembles the problem with a barrier option except that the
conditions of termination are unknown and depend on many parameters (such as
volatility, base interest rate, interest rate differential). The intuition of the stopping
time problem is as follows: the smart option will position itself on the point on the
curve that fits it the best.

Note that the forward maturity ladder in a pricing and risk management system
that puts the forward delta in the terminal bucket is WRONG.

27.7 expressing the various sub-options

27.8 conclusion
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munications in StatisticsÂŮTheory and Methods, 35(3):395–405, 2006.

[94] BA Rogozin. An estimate for concentration functions. Theory of Probability &
Its Applications, 6(1):94–97, 1961.

[95] BA Rogozin. The concentration functions of sums of independent random
variables. In Proceedings of the Second Japan-USSR Symposium on Probability
Theory, pages 370–376. Springer, 1973.

[96] Michael Rothschild and Joseph E Stiglitz. Increasing risk: I. a definition.
Journal of Economic theory, 2(3):225–243, 1970.

[97] Michael Rothschild and Joseph E Stiglitz. Increasing risk ii: Its economic
consequences. Journal of Economic Theory, 3(1):66–84, 1971.

[98] Gennady Samorodnitsky and Murad S Taqqu. Stable non-Gaussian random
processes: stochastic models with infinite variance, volume 1. CRC Press, 1994.

[99] Leonard J Savage. The foundations of statistics. Courier Dover Publications,
1954.

[100] Mr Christian Schmieder, Mr Tidiane Kinda, Mr Nassim N Taleb, Elena
Loukoianova, and Mr Elie Canetti. A new heuristic measure of fragility and
tail risks: application to stress testing. Number 12-216. Andrews McMeel Pub-
lishing, 2012.

[101] Laurent Schwartz. Théorie des distributions. Bull. Amer. Math. Soc. 58 (1952),
78-85 DOI: http://dx. doi. org/10.1090/S0002-9904-1952-09555-0 PII, pages 0002–
9904, 1952.

[102] William F Sharpe. Mutual fund performance. Journal of business, pages 119–
138, 1966.

[103] Vernon L Smith. Rationality in economics: constructivist and ecological forms.
Cambridge University Press, Cambridge, 2008.

[104] Emre Soyer and Robin M Hogarth. The illusion of predictability: How regres-
sion statistics mislead experts. International Journal of Forecasting, 28(3):695–
711, 2012.

358



BIBLIOGRAPHY

[105] N N Taleb and R Douady. Mathematical definition, mapping, and detection
of (anti) fragility. Quantitative Finance, 2013.

[106] Nassim Taleb. Fooled by randomness: The hidden role of chance in life and in the
markets. Random House Trade Paperbacks, 2001/2005.

[107] Nassim N Taleb and Daniel G Goldstein. The problem is beyond psychology:
The real world is more random than regression analyses. International Journal
of Forecasting, 28(3):715–716, 2012.

[108] Nassim Nicholas Taleb. Dynamic Hedging: Managing Vanilla and Exotic Options.
John Wiley & Sons (Wiley Series in Financial Engineering), 1997.

[109] Nassim Nicholas Taleb. Errors, robustness, and the fourth quadrant. Interna-
tional Journal of Forecasting, 25(4):744–759, 2009.

[110] Nassim Nicholas Taleb. The Black Swan:: The Impact of the Highly Improbable
Fragility. Random House Digital, Inc., 2010.

[111] Nassim Nicholas Taleb. Antifragile: things that gain from disorder. Random
House and Penguin, 2012.

[112] Albert Tarantola. Inverse problem theory: Methods for data fitting and model pa-
rameter estimation. Elsevier Science, 2002.

[113] Jozef L Teugels. The class of subexponential distributions. The Annals of
Probability, 3(6):1000–1011, 1975.

[114] Peter M Todd and Gerd Gigerenzer. Ecological rationality: intelligence in the
world. Evolution and cognition series. Oxford University Press, Oxford, 2012.

[115] Bence Toth, Yves Lemperiere, Cyril Deremble, Joachim De Lataillade, Julien
Kockelkoren, and J-P Bouchaud. Anomalous price impact and the critical
nature of liquidity in financial markets. Physical Review X, 1(2):021006, 2011.

[116] Jack L Treynor. How to rate management of investment funds. Harvard busi-
ness review, 43(1):63–75, 1965.

[117] Lenos Trigeorgis. Real options: Managerial flexibility and strategy in resource
allocation. MIT press, 1996.

[118] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuris-
tics and biases. science, 185(4157):1124–1131, 1974.

[119] Vladimir V Uchaikin and Vladimir M Zolotarev. Chance and stability: stable
distributions and their applications. Walter de Gruyter, 1999.

[120] Willem Rutger van Zwet. Convex transformations of random variables, volume 7.
Mathematisch centrum, 1964.

[121] Rafał Weron. Levy-stable distributions revisited: tail index> 2 does not
exclude the levy-stable regime. International Journal of Modern Physics C,
12(02):209–223, 2001.

359



BIBLIOGRAPHY

[122] Stephen J Wolfe. On the local behavior of characteristic functions. The Annals
of Probability, pages 862–866, 1973.

[123] Stephen James Wolfe. On the unimodality of infinitely divisible distribution
functions. Probability Theory and Related Fields, 45(4):329–335, 1978.

[124] IV Zaliapin, Yan Y Kagan, and Federic P Schoenberg. Approximating the
distribution of pareto sums. Pure and Applied geophysics, 162(6-7):1187–1228,
2005.

[125] Vladimir M Zolotarev. One-dimensional stable distributions, volume 65. Ameri-
can Mathematical Soc., 1986.

360



I N D E X

Skin in the Game, 59

Antifragility, 277, 281, 313, 337, 343

Black Swan, 19, 21, 47, 51, 53, 54, 65, 73,
94, 95, 116, 200, 219, 237, 264,
322, 342, 343

Citation Rings, 58

Concavity/Convexity, iii, iv, xvi, 5, 45,
47, 48, 74, 76, 78, 91, 93, 118,
235, 264–269, 278, 279, 281, 287–
289, 297, 303, 313, 315, 319–321,
323–326, 342, 343

Econometrics, 54, 94, 192, 196, 200, 201,
297

Egomaniac as an rebuttal, 200

Empiricism (Naive Empiricism), 47

Finance Artists, 81

Fragility, 46, 49, 129, 264, 266, 287, 329

Law of Large Numbers, xv, 19, 22, 41, 51,
65, 95, 119, 123, 124, 133, 137,
139, 153, 155, 156, 181, 183

Loss Function, 66, 67

Measure Theory, 52, 53, 164

Pinker Problem, 186

Pseudo-biases, 131

Skin in the Game, xv, xvi, 7, 35, 60, 61,
201, 249, 258

Triffat Fallacy, 59

Turkey Problem, 65, 95, 184

Via Negativa, 36

361


	Abstract
	Acknowledgments
	Notes for Reviewers
	Figuring Out Probability and What It Means
	1 What is Probability? What is Exposure?
	1.1 The Conflation of Events and Exposures
	1.1.1 Contract Theory

	1.2 Payoff Classes P_1 through P_4 
	1.2.1 Atomic Payoff P_1
	1.2.2 Binary Payoff Class P_2
	1.2.3 Vanilla Payoff Class P_3, building blocks for regular exposures.
	1.2.4 Composite/Sigmoidal Payoff Class P_4

	1.3 Achieving Nonlinearity through P_4 
	1.4 Main Errors in the Literature
	1.5 The Applicability of Some Psychological Biases
	1.6 Misfitness of Prediction Markets
	1.6.1 The Black Swan is Not About Probability But Payoff
	1.6.2 Chernoff Bound
	1.6.3 Fatter tails lower the probability of remote events (the binary) and raise the value of the vanilla.
	1.6.4  The law of large numbers works better with the binary than the variable

	1.7 Finding Inconsistencies in Scholarly Treatments of Events
	1.8 Metaprobability and the Payoff Kernel
	1.9 Classification and Codification of Exposures
	1.10 Numeraire definition
	1.11 What is an Insurable Risk?
	1.12 Ruin problems
	1.13 Skepticism, Uncertainty, and Scale of a Distributon
	1.14 Why Pascal Wager Has Nothing to Do With the Left Tail

	2 The "Real World" Rigor Project
	2.1 A Course With an Absurd Title
	2.2 Problems and Inverse Problems
	2.3 Fragility, not Just Statistics, For Hidden Risks
	2.4 Solution: The Convex Heuristic
	2.4.1 Convex Heuristics, Rationality, and Revelation of Preferences

	2.5 Fragility and Model Error
	2.5.1 Why Engineering?

	2.6 General Classification of Problems Related To Fat Tails
	General Classification of Problems Related To Fat Tails
	2.7 Closing the Introduction

	A What's a Charlatan in Risk and Probability?
	A.1 Charlatan


	Fat Tails: The LLN Under Real World Ecologies
	3 Fat Tails and The Problem of Induction
	3.1 The Problem of (Enumerative) Induction
	3.2 Empirical Risk Estimators
	3.3 Fat Tails, the Finite Moment Case
	3.4 A Simple Heuristic to Create Mildly Fat Tails
	3.5 The Body, The Shoulders, and The Tails
	3.6 Fattening of Tails With Skewed Variance
	3.7 Fat Tails in Higher Dimension
	3.8 Scalable and Nonscalable, A Deeper View of Fat Tails
	3.9 Subexponential as a class of fat tailed distributions
	3.10 Joint Fat-Tailedness and Elliptical Distributions
	3.11 Different Approaches For Statistical Estimators
	3.12 Econometrics imagines functions in L^2 Space
	3.13 Typical Manifestations of The Turkey Surprise
	3.14 Metrics for Functions Outside L^2 Space
	3.15 Using the Hilbert Transform
	3.16 A Comment on Bayesian Methods in Risk Management

	B Special Cases of Fat Tails
	B.1 Multimodality and Fat Tails, or the War and Peace Model
	B.2 Transition probabilites: what can break will break

	C Quick and Robust Measure of Fat Tails
	C.1 Introduction
	C.2 First Metric, the Simple Estimator
	C.3 Second Metric, the _2 estimator

	4 Hierarchy of Distributions For Asymmetries
	4.1 Permissible Empirical Statements
	4.2 Masquerade Example
	4.3 The Probabilistic Version of Absense of Evidence
	4.4 Via Negativa and One-Sided Arbitrage of Statistical Methods
	4.5 Hierarchy of Distributions in Term of Tails
	4.6 How To Arbitrage Kolmogorov-Smirnov 
	4.7 Mistaking Evidence for Anecdotes & The Reverse

	5 Effects of Higher Orders of Uncertainty
	5.1 Meta-Probability Distribution
	5.2 Metadistribution and the Calibration of Power Laws
	5.3 The Effect of Metaprobability on Fat Tails
	5.4 Fukushima, Or How Errors Compound
	5.5 The Markowitz inconsistency
	5.6 Psychological pseudo-biases under second layer of uncertainty.
	5.6.1 The pathologization fallacy


	6 Large Numbers and CLT in the Real World
	6.0.2 The "Pinker Problem"
	6.1 The problem of Matching Errors
	6.2 Generalizing Mean Deviation as Partial Expectation
	6.3 Class of Stable Distributions
	6.3.1 Results
	6.3.2 Stochastic Alpha or Mixed Samples

	6.4 Symmetric NonStable Distributions in the Subexponential Class
	6.4.1 Symmetric Mixed Gaussians, Stochastic Mean
	6.4.2 Half cubic Student T (Lévy Stable Basin)
	6.4.3 Cubic Student T (Gaussian Basin)

	6.5 Asymmetric NonStable Distributions in the Subexponetial Class
	6.5.1 One-tailed Pareto Distributions
	6.5.2 The Lognormal and Borderline Subexponential Class

	6.6 Asymmetric Distributions in the Superexponential Class
	6.6.1 Mixing Gaussian Distributions and Poisson Case
	6.6.2 Skew Normal Distribution
	6.6.3 Super-thin tailed distributions: Subgaussians

	6.7 Acknowledgement
	6.7.1 Derivations using explicit E(|X|)
	6.7.2 Derivations using the Hilbert Transform and =0


	D In Progress Derivations for LLN across Fat Tails
	D.1 Comments on LLN and Bounds
	D.1.1 Speed of Convergence for Simple Cases
	D.1.2 Comparing N = 1 to N = 2 for a symmetric power law with 1<2.

	D.2 Digression Into Inversion of Characteristic Function of NonStable Power Law
	D.2.1 Integrable Characteristic Functions

	D.3 Pulling the PDF of an n-Summed Student T

	7 Preasymptotics and Central Limit in the Real World
	7.1 Using Log Cumulants to Observe Preasymptotics
	7.2 Convergence of the Maximum of a Finite Variance Power Law
	7.3 Sources and Further Readings
	7.4 Convergence for Non-Lévy StablePower Laws Temporarily here)

	E Where Standard Diversification Fails
	F Fat Tails and Random Matrices
	8 Some Misuses of Statistics in Social Science
	8.1 Mechanistic Statistical Statements
	8.2 Attribute Substitution
	8.3 The Tails Sampling Property
	8.4 A discussion of the Paretan 80/20 Rule
	8.5 Survivorship Bias (Casanova) Property
	8.6 Left (Right) Tail Sample Insufficiency Under Negative (Positive) Skewness
	8.7 Why N=1 Can Be Very, Very Significant Statistically
	8.8 The Instability of Squared Variations in Regressions
	8.9 Statistical Testing of Differences Between Variables
	8.10 Studying the Statistical Properties of Binaries and Extending to Vanillas
	8.11 Why Economics Time Series Don't Replicate
	8.12 A General Summary of The Problem of Reliance on Past Time Series
	8.13 Conclusion

	G On the Instability of Econometric Data
	9 Fat Tails From Recursive Uncertainty
	9.1 Layering uncertainty
	9.2 Regime 1 (Explosive): Case of a constant error parameter a
	9.3 Convergence to Power Laws
	9.4 Regime 1b: Preservation of Variance
	9.5 Regime 2: Cases of decaying parameters a_n
	9.6 Conclusion and Suggested Application 

	10 Parametrization and Tails
	10.1 Some Bad News Concerning power laws
	10.2 Extreme Value Theory: Not a Panacea
	10.3 Using Power Laws Without Being Harmed by Mistakes

	H Poisson vs. Power Law Tails
	H.1 Beware The Poisson 
	H.2 Leave it to the Data 

	11 Brownian Motion in the Real World
	11.1 Path Dependence and History as Revelation of Antifragility
	11.2 SP and path dependence (incomplete)
	11.3 Brownian Motion in the Real World
	11.4 Stochastic Processes and Nonanticipating Strategies
	11.5 Finite Variance not Necessary for Anything Ecological (incl. quant finance)

	12 The Fourth Quadrant "Solution"
	12.1 Two types of Decisions

	13 Risk and Precaution
	13.0.1 Stopping time equivalence
	13.0.2 Sign of exposure
	13.0.3 layering

	13.1 What is the Precautionary Principle
	13.2 Why Ruin is Serious Business
	13.3 Skepticism and Precaution
	13.4  Fallacious arguments in Risk Management
	13.4.1 Crossing the road (the paralysis fallacy)
	13.4.2 The Psychology of Risk and Thick Tailed Distributions
	13.4.3 The Loch Ness fallacy
	13.4.4 The fallacy of misusing the naturalistic fallacy
	13.4.5 The "Butterfly in China" fallacy
	13.4.6 The potato fallacy
	13.4.7 The Russian roulette fallacy (the counterexamples in the risk domain)
	13.4.8 The Carpenter Fallacy
	13.4.9 The technological salvation fallacy
	13.4.10 The pathologization fallacy


	14 Skin in the game and Risk Taking
	14.1 Payoff Skewness and Lack of Skin-in-the-Game


	(Anti)Fragility and Nonlinear Responses to Random Variables
	15 Exposures As Transformed Random Variables
	15.1 The Conflation Problem Redux: Exposures to x Confused With Knowledge About x 
	15.1.1 Limitations of knowledge
	15.1.2 Bad news
	15.1.3 The central point about what to understand
	15.1.4 Fragility and Antifragility

	15.2 Transformations of Probability Distributions
	15.3 Application 1: Happiness (f(x)) is different from wealth (x)
	15.4 The effect of convexity on the distribution of f(x)
	15.5 Estimation Methods When the Payoff is Convex
	15.5.1 Convexity and Explosive Payoffs
	15.5.2 Conclusion: The Asymmetry in Decision Making


	16 An Uncertainty Approach to Fragility
	16.1 A Review of The General Notion of "Robustness"
	16.2 Introduction
	16.2.1 Intrinsic and Inherited Fragility:
	16.2.2 Fragility As Separate Risk From Psychological Preferences
	16.2.3 Avoidance of the Psychological
	16.2.4 Beyond Jensen's Inequality


	17 The Fragility Theorems
	17.1 Tail Sensitivity to Uncertainty
	17.1.1 Precise Expression of Fragility

	17.2 Effect of Nonlinearity on Intrinsic Fragility
	17.3 Fragility Drift
	17.3.1 Second-order Fragility

	17.4 Expressions of Robustness and Antifragility
	17.4.1 Definition of Robustness
	17.4.2 Antifragility
	17.4.3 Remarks 
	17.4.4 Unconditionality of the shortfall measure 


	18 Applications to Model Error
	18.0.5 Example:Application to Budget Deficits
	18.0.6 Model Error and Semi-Bias as Nonlinearity from Missed Stochasticity of Variables

	18.1 Model Bias, Second Order Effects, and Fragility

	19 The Fragility Measurement Heuristics
	19.0.1 The Fragility/Model Error Detection Heuristic (detecting _A and _B when cogent)
	19.1 Example 1 (Detecting Risk Not Shown By Stress Test)
	19.2 The Heuristic applied to a stress testing
	19.2.1 Further Applications Investigated in Next Chapters

	19.3 Stress Tests
	19.4 General Methodology

	20 Fragility and Economic Models
	20.1 The Markowitz Inconsistency
	20.2 Application: Ricardian Model and Left Tail Exposure
	20.2.1 Error and Probabilities


	21 The Origin of Thin-Tails
	21.1 Properties of the Inherited Probability Distribution
	21.2 Conclusion and Remarks

	22 Small is Beautiful: Risk, Scale and Concentration
	22.1 Introduction: The Tower of Babel
	22.2 Unbounded Convexity Effects
	22.3 A Richer Model: The Generalized Sigmoid

	23 Why is the fragile nonlinear?
	24 How The World Will Progressively Look Weirder
	24.1 How Noise Explodes Faster than Data
	24.2 Derivations

	25 The Convexity of Wealth to Inequality
	25.1 The One Percent of the One Percent are Divorced from the Rest

	26 Nonlinearities and Risk in Medicine
	26.1 Antifragility from Uneven Distribution

	27 American Options and Hidden Convexity
	27.1 This Note
	27.2 The General Mathematical Results: Pricing Series of Hidden Options "Use One Lose All"
	27.3 Misplaced Precision
	27.4 The Pricing Equation
	27.5 War Stories
	27.6 The Stopping Time Problem
	27.7 Expressing the various sub-options
	27.8 Conclusion

	Bibliography
	Index


